分析 (1)利用题中的新定义,可先计算$\overrightarrow{AB}$,$\overrightarrow{AP}$,结合已知A(1,2),利用向量的减法,可求P点坐标.
(2)设平面内曲线C上的点P(x,y),根据把点B绕点A逆时针方向旋转θ角得到点P的定义,可求出其绕原点沿逆时针方向旋转$\frac{π}{4}$后得到点P′($\frac{\sqrt{2}}{2}$(x-y),$\frac{\sqrt{2}}{2}$(x+y)),另由点P′在曲线x2-y2=3,代入该方程即可求得原来曲线C的方程.
解答 解:(1)由已知可得$\overrightarrow{AB}$=($\sqrt{2}$,-2$\sqrt{2}$),
将点B(1+$\sqrt{2},2-2\sqrt{2}$),绕点A顺时针旋转$\frac{π}{4}$,
得$\overrightarrow{AP}$=($\sqrt{2}$cos$\frac{π}{4}$-2$\sqrt{2}$sin$\frac{π}{4}$,-$\sqrt{2}$sin$\frac{π}{4}$-2$\sqrt{2}$cos$\frac{π}{4}$)=(-1,-3)
∵A(1,2),∴P(0,-1 )
(2)设平面内曲线C上的点P(x,y),则其绕原点沿逆时针方向旋转$\frac{π}{4}$后得到点P′($\frac{\sqrt{2}}{2}$(x-y),$\frac{\sqrt{2}}{2}$(x+y)),
∵点P′在曲线x2-y2=3,
∴[($\frac{\sqrt{2}}{2}$(x-y)]2-[$\frac{\sqrt{2}}{2}$(x+y)]2=3,
整理得xy=-$\frac{3}{2}$.
点评 本题以新定义为切入点,考查向量在几何中的应用以及圆锥曲线的轨迹问题,同时考查学生的阅读能力和分析解决问题的能力以及计算能力.融合了向量的减法,解题的关键是正确理解新定义.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com