精英家教网 > 高中数学 > 题目详情
设f(x)=ax2+bx+c(a>b>c),f(1)=0,g(x)=ax+b.
(I)求证:函数f(x)与g(x)的图象有两个交点;
(Ⅱ)设函数f(x)与g(x)的图象的两个交点A、B在x轴上的射影为A1、B1,求|A1B1|的取值范围.
分析:(I)根据f(1)=0,得出a,b,c的关系,再由f(x)=g(x),两边移项,构成一个一元二次方程,用△来进行判断;
( II)已知函数f(x)与g(x)的图象的两个交点A、B,由(1)得出两根,根据韦达定理,进行求解;
解答:解:(I)∵f(1)=0
∴a+b+c=0
∵a>b>c
∴a>0,c<0
由ax2+bx+c=ax+b得ax2+(b-a)x+c-b=0,
△=(b-a)2-4a(c-b)=(-a-c-a)2-4a(c+a+c)=c2-4ac
∵a>0,c<0
∴△>0所以函数f(x)与g(x)的图象有两个交点.
(II)由已知方程ax2+(b-a)x+c-b=0,两根为x1,x2
x1+x2=
a-b
a
=2+
c
a
x1x2=
c-b
a
=1+
2c
a

|x1-x2|=
(x1+x2)2-4x1x2
=
(2+
c
a
)
2
-4(1+2
c
a
)
=
(
c
a
)
2
-4(
c
a
)
=
(
c
a
-2)
2
-4

由a+b+c=0,a>b>c得a>0,c<0,a>-a-c>c,
于是得到,-2<
c
a
<-
1
2

|x1-x2|∈(
3
2
,2
3
)

所以,|A1B1|的取值范围(
3
2
,2
3
)
点评:此题主要考查二次函数的图象及其性质的应用,第一问比较简单,第二问计算比较复杂,考查学生的计算能力,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

13、设f(x)=ax2+bx+c(a≠0),对于任意-1≤x≤1,有f(x)|≤1;求证|f(2)|≤7.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),其定义域为D,若任取x1、x2∈D,且x1≠x2,若f(
x1+x2
2
)>
1
2
[f(x1)+f(x2)],则称f(x)为定义域上的凸函数.
(1)设f(x)=ax2(a>0),试判断f(x)是否为其定义域上的凸函数,并说明原因;
(2)若函数f(x)=㏒ax(a>0,且a≠1)为其定义域上的凸函数,试求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ax2+x-a,g(x)=2ax+5-3a
(1)若f(x)在x∈[0,1]上的最大值是
54
,求a的值;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围;
(3)若f(x)=g(x)在x∈[0,1]上有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于给定正数k,定fk(x)=
f(x)   (f(x)≤k)
k    (f(x)>k)
,设f(x)=ax2-2ax-a2+5a+2,对任意x∈R和任意a∈(-∞,0)恒有fk(x)=
f(x)
,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)设f(x)=ax2+bx,且1≤f(-1)≤2,2≤f(1)≤4,则f(2)的最大值为
14
14

查看答案和解析>>

同步练习册答案