精英家教网 > 高中数学 > 题目详情
7.求下列各式的值:
(1)${2^{4+{{log}_2}3}}$
(2)${0.064^{-\frac{1}{3}}}-{(-\frac{7}{8})^0}+{[{(-2)^3}]^{-\frac{4}{3}}}+{16^{-0.75}}+{0.01^{\frac{1}{2}}}$.

分析 (1)利用对数的运算性质即可得出.
(2)利用指数的运算性质即可得出.

解答 解:(1)原式=${2}^{4}×{2}^{lo{g}_{2}3}$=16×3=48.
(2)原式=$0.{4}^{3×(-\frac{1}{3})}$-1+2-4+${2}^{4×(-\frac{3}{4})}$+0.1
=$\frac{5}{2}$-1+$\frac{1}{16}$+$\frac{1}{8}$+0.1
=$\frac{143}{80}$.

点评 本题考查了指数与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数$y=\sqrt{1-\frac{1}{2^x}}$的定义域为[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“a>b”是“a2>b2”的__________条件(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$f(x)={({x+1})^2}\;,\;\;g(x)=\frac{x-1}{x+1}$,则f(x)•g(x)=x2-1,(x≠-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=$\sqrt{2}$,AB=AD=1,则异面直线AB与CD所成角的正切值为.(  )
A.$\sqrt{7}$B.$\frac{\sqrt{7}}{8}$C.$\frac{\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题p:?x∈[0,π],使$\frac{\sqrt{3}}{2}$sinx+$\frac{3}{2}$cosx<a;命题q:?x∈(0,+∞),ax<x2+1,若命题p∧q为真,则实数a的取值范围为-$\frac{3}{2}$<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一个几何体的三视图如图所示(单位:m),正视图和俯视图的上面均是底边长为12m的等腰直角三角形,下面均是边长为6m的正方形,则该几何体的体积为216+72πm3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知锐角△ABC的内角A,B,C所对的边分别为a,b,c,若acosB=4csinC-bcosA,则cosC=$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

同步练习册答案