【题目】心理学家发现视觉和空间能力与性别有关,某高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
几何题 | 代数题 | 合计 | ||
男同学 | 22 | 8 | 30 | |
女同学 | 8 | 12 | 20 | |
合计 | 30 | 20 | 50 |
(1)能否据此判断有的把握认为视觉和空间能力与性别有关?
(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为,求的数学期望和方差.
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的 ,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+excosx, ,过点 作函数F(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的,两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.
(1)试分别求出生产,两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;
(2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?
(3)现在公司准备投入亿元资金同时生产,两种芯片,设投入千万元生产芯片,用表示公司所过利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某宾馆有间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表:
每间客房的定价 | 220元 | 200元 | 180元 | 160元 |
每天的入住率 |
对于每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为( )
A. 220元 B. 200元 C. 180元 D. 160元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ﹣ρsinθ﹣25=0,曲线W: (t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数在区间上存在零点,求实数的取值范围;
(2)当时,若对任意的,总存在使成立,求实数的取值范围;
(3)若的值域为区间,是否存在常数,使区间的长度为?若存在,求出的值,若不存在,请说明理由.(柱:区间的长度为)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,对于任意的 ,都有, 当时,,且.
( I ) 求的值;
(II) 当时,求函数的最大值和最小值;
(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】国际奥委会于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了100位居民调查结果统计如下:
支持 | 不支持 | 合计 | |
年龄不大于50岁 | _______ | _______ | 80 |
年龄大于50岁 | 10 | _______ | _______ |
合计 | _______ | 70 | 100 |
(1)根据已知数据,把表格填写完整;
(2)是否有95%的把握认为年龄与支持申办奥运有关?
附表:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.814 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com