精英家教网 > 高中数学 > 题目详情

【题目】心理学家发现视觉和空间能力与性别有关,某高中数学兴趣小组为了验证这个结论,从兴趣小组中抽取50名同学(男3020),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

几何题

代数题

合计

男同学

22

8

30

女同学

8

12

20

合计

30

20

50

(1)能否据此判断有的把握认为视觉和空间能力与性别有关?

(2)以上列联表中女生选做几何题的频率作为概率,从该校1500名女生中随机选6名女生,记6名女生选做几何题的人数为,求的数学期望和方差.

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

【答案】(1)能判断;(2),.

【解析】试题分析:(1)结合列联表中数据,利用公式求得 ,与邻界值比较,即可得到结论;(2)服从二项分布根据二项分布的期望公式可得数学期望根据二项分布的方差公式可得方差为 ..

试题解析:(1)由表数据得的观测值根据统计有的把握认为视觉和空间能力与性别有关;(2)以列联表中女生选做几何题的频率作为概率,从该校名女生中随机选名女生,记名女生选做几何题的人数为服从二项分布根据二项分布的期望公式可得数学期望根据二项分布的方差公式可得方差为 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的 ,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+excosx, ,过点 作函数F(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{xn},求数列{xn}的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的两种芯片都已经获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产.经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为,其图像如图所示.

(1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)的函数关系式;

(2)如果公司只生产一种芯片,生产哪种芯片毛收入更大?

(3)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所过利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某宾馆有间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表:

每间客房的定价

220元

200元

180元

160元

每天的入住率

对于每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为( )

A. 220元 B. 200元 C. 180元 D. 160元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,以x轴非负半轴为极轴建立极坐标系.已知直线l的方程为4ρcosθ﹣ρsinθ﹣25=0,曲线W: (t是参数).
(1)求直线l的直角坐标方程与曲线W的普通方程;
(2)若点P在直线l上,Q在曲线W上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上存在零点,求实数的取值范围;

(2)当时,若对任意的,总存在使成立,求实数的取值范围;

(3)若的值域为区间,是否存在常数,使区间的长度为?若存在,求出的值,若不存在,请说明理由.(柱:区间的长度为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对于任意的 ,都有, 当时,,且.

( I ) 求的值;

(II) 当时,求函数的最大值和最小值;

(III) 设函数,判断函数g(x)最多有几个零点,并求出此时实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(12分)

(1)若函数上为增函数,求实数的取值范围;

(2)当时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

_______

_______

80

年龄大于50岁

10

_______

_______

合计

_______

70

100

(1)根据已知数据,把表格填写完整;

(2)是否有95%的把握认为年龄与支持申办奥运有关?

附表:

0.100

0.050

0.025

0.010

2.706

3.814

5.024

6.635

查看答案和解析>>

同步练习册答案