精英家教网 > 高中数学 > 题目详情
空间四边形ABCD中,对角线AC=10,BD=6,M、N分别是AB、CD的中点,且MN=7,则异面直线AC与BD所成的角为
 
考点:异面直线及其所成的角
专题:空间角
分析:首先通过平行线把异面直线转化为共面直线,利用解三角形知识中的余弦定理求出异面直线的夹角.
解答: 解:取BC的中点G,连接GM,GN
M、N分别是AB、CD的中点,对角线AC=10,BD=6,
所以:GM=
1
2
AC
=5,GN=
1
2
BD=3

在△GMN中,EF=7,GM=5,GN=3
利用余弦定理得:cos∠MGN=|
GM2+GN2-EF2
2GM•GN
|=
1
2

即:cos∠MGN=
1
2

所以:∠MGN=60°
故答案为:60°
所以:异面直线AC与BD所成的角为60°
点评:本题考查的知识要点:异面直线所成的角的应用,余弦定理的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={-1,0,1},N={-1,0},则M∩N=(  )
A、{-1,0,1}
B、{-1,0}
C、{-1,1}
D、{1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点.
(1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程.
(2)若直线l与椭圆
3y2
4
+
3x2
2
=1的交点为C,D,问是否存在这样的直线l使|AF|•|CF|=|BF|•|DF|,若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一根水平放置的长方体形枕木的安全负荷与它的宽度a成正比,与它的厚度d的平方成正比,与它的长度l的平方成反比.
(1)将此枕木翻转90°(即宽度变为厚度),枕木的安全负荷如何变化?为什么?(设翻转前后枕木的安全负荷分别为y1,y2且翻转前后的比例系数相同,都为同一正常数k)
(2)现有一根横断面为半圆(已知半圆的半径为R)的木材,用它来截取成长方体形的枕木,其长度为10,问截取枕木的厚度为d为多少时,可使安全负荷y最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2sin(2x+
π
6
)(x∈[-
π
6
6
]
),在区间D上单调递增,则区间D可以是(  )
A、[0,
π
3
]
B、[
π
12
12
]
C、[
π
3
6
]
D、[
6
,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(-2,6),F2为椭圆
x2
25
+
y2
16
=1的右焦点,点M在椭圆上,求|MP|+|MF2|最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算:
.
a 1a 2
a 3a 4
.
=a1a4-a2a3,若将函数f(x)=
.
-sinxcosx
1
3
.
的图象向左平移m(m>0)个单位后,所得图象对应的函数为偶函数,则m的最小值是(  )
A、
π
6
B、
π
3
C、
3
D、
5
6
π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1+3x)(2x-
1
x2
n(n∈N*)的展开式中没有常数项,且4<n<8,求展开式中含x5的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=tan2x-tan(π-x)
(1)求f(
π
3
)的值       
(2)若x∈[-
π
4
π
4
],求f(x)的最大、最小值.

查看答案和解析>>

同步练习册答案