精英家教网 > 高中数学 > 题目详情

O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为(  )

A.2             B.2

C.2           D.4

 

【答案】

C

【解析】由题意知抛物线的焦点F(,0),如图,

由抛物线定义知|PF|=|PM|,又|PF|=4,所以xP=3,代入抛物线方程求得yP=2

所以SPOF·|OF|·yP=2.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一点,
FA
与x轴正向的夹角为60°,则|
OA
|
为(  )
A、
21p
4
B、
21
p
2
C、
13
6
p
D、
13
36
p

查看答案和解析>>

科目:高中数学 来源: 题型:

设O是坐标原点,F是抛物线y2=2px(p>0)的焦点,A是抛物线上的一个动点,
FA
与x轴正方向的夹角为60°,求|
OA
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

O为坐标原点,F为抛物线C:y2=4
2
x的焦点,P为C上一点,若|PF|=4
2
,则△POF的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的方程为x2=2py(p>0),O为坐标原点,F为抛物线焦点,直线y=x截抛物线C所得弦|ON|=4
2

(1)求抛物线C的方程;
(2)若直线过点F交抛物线于A,B两点,交x轴于点M,且
MA
=a
AF
MB
=b
BF
,对任意的直线l,a+b是否为定值?若是,求出a+b的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x,O为坐标原点,F为C的焦点,P是C上一点.若△OPF是等腰三角形,则|PO|=
 

查看答案和解析>>

同步练习册答案