精英家教网 > 高中数学 > 题目详情

【题目】第七届世界军人运动会于20191018日至20191027日在中国武汉举行,第七届世界军人运动会是我国第一次承办的综合性国际军事体育赛事,也是继北京奥运会后我国举办的规模最大的国际体育盛会.经过激烈角逐,奖牌榜的前6名依次为中国俄罗斯巴西法国波兰和德国.其中德国队共有45名运动员获得了奖牌,其中金牌10枚银牌15枚铜牌20枚,某大学德语系同学利用分层抽样的方式从德国队获奖选手中抽取9名获奖代表.

1)请问这9名获奖代表中获金牌银牌铜牌的人数分别为多少人?

2)从这9人中随机抽取3人,记这3人中银牌选手的人数为,求的分布列和期望.

【答案】12人,3人,4.2)分布列见解析,1

【解析】

1)根据分层抽样按比例分配,即可求出各层抽取的人数;

2)由(1)得9人中有3人获的银牌,的可能取值为0123,用古典概型求概率方法,求出可能值的概率,即可得出分布列,进而求出期望.

1)由题意可知,德国获奖运动员中,金牌银牌铜牌的人数比为

所以这9名获奖运动员中金牌银牌铜牌的人数依次为23人和4.

2的可能取值为0123

.的分布列为

0

1

2

3

.

所以的期望值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在中老年人群体中,肠胃病是一种高发性疾病某医学小组为了解肠胃病与运动之间的联系,调查了50位中老年人每周运动的总时长(单位:小时),将数据分成[04),[48),[814),[1416),[1620),[2024]6组进行统计,并绘制出如图所示的柱形图.

图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.

每周运动的总时长不少于14小时为运动较多.

1)根据题意,完成下面的2×2列联表:

有肠胃病

无肠胃病

总计

运动较多

运动较少

总计

2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?

附:K2na+b+c+d

PK2k

0.0.50

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如表:

AQI

空气质量

轻度污染

中度污染

重度污染

重度污染

天数

6

14

18

27

25

10

1)从空气质量指数属于[050],(50100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为,假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为.9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.

i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;

ii)试问该企业7月、8月、9月这三个月因气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在边长为8正方形中,点的中点,上一点,且,若对于常数,在正方形的边上恰有个不同的点,使得,则实数的取值范围为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共1000名男生中随机抽取50人测量身高.据测量,被测学生身高全部介于155cm195cm之间,将测量结果按如下方式分成八组:第一组,第二组,第八组.下图是按上述分组方法得到的频率分布直方图的一部分.其中第六组、第七组、第八组人数依次构成等差数列.

1)求第六组、第七组的频率,并估计高三年级全体男生身高在180cm以上(含180cm)的人数;

2)学校决定让这五十人在运动会上组成一个高旗队,在这五十人中要选身高在180cm以上(含180cm)的三人作为队长,记X为身高在的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面是边长为的等边三角形,,点的中点.

1)求证:平面

2)求证:

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点MN分别是椭圆C)的左顶点和上顶点,F为其右焦点,,椭圆的离心率为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设不过原点O的直线与椭圆C相交于AB两点,若直线OAABOB的斜率成等比数列,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,其中为常数;

(1)若,且是奇函数,求的值;

(2)若 ,函数的最小值是,求的最大值;

(3)若,在上存在个点 ,满足

,使得

求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)证明:在区间上有且仅有个零点.

查看答案和解析>>

同步练习册答案