精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥

证明平面平面

当四棱锥的体积为且二面角为钝角时求直线与平面所成角的正弦值

【答案】(1)见解析(2)

【解析】试题分析:的中点,连接由正三角形的性质可得由勾股定理可得根据线面垂直的判定定理可得平面从而根据面面垂直的判定定理可得平面平面;(根据四棱锥的体积为可得,以为坐标原点,以轴, 轴.在平面内过点作垂直于平面的直线为轴,建立空间直角坐标系,算出直线的方向向量与平面的法向量,根据空间向量夹角的余弦公式可得结果.

试题解析:)取的中点连接

为正三角形

四边形为矩形

平面

平面平面平面

平面平面

平面平面平面

过点平面垂足一定落在平面与平面的交线

四棱锥的体积为

如图为坐标原点

在平面内过点作垂直于平面的直线为建立空间直角坐标系

由题意可知

设平面的一个法向量为

设直线与平面所成的角为

则直线与平面所成角的正弦值为

方法点晴】本题主要考查利用线面垂直、面面垂直的判定定理以及空间向量求线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点

(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段的中点的轨迹方程;

(3)过原点的直线交椭圆于两点,求面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在定义域A上的值域为,则区间A不可能为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,四边形为菱形,且 平面 中点.

1求证: 平面

2若平面平面,求到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据条件求下列各函数的解析式:

(1)已知函数f(x+1)=3x+2,则f(x)的解析式;

(2)已知是一次函数,且满足,求的解析式;

(3)已知满足,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论函数的单调性

在区间上恒成立求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体 是正方形 是梯形 平面 分别为棱的中点

求证:平面平面

求平面和平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)是定义在R上的奇函数,且当x≤0时,fx)=x2+2x

(1)现已画出函数fx)在y轴左侧的图象,如图所示,请补全函数fx)的图象;

(2)求出函数fx)(x>0)的解析式;

(3)若方程fx)=a恰有3个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数.

(1)若,且函数在区间内单调递增,求实数的取值范围;

(2)若,试判断函数的零点个数.

查看答案和解析>>

同步练习册答案