分析 利用向量共线、相等的定义,分别进行判断,即可得出结论.
解答 解:①若非零向量$\overrightarrow{a}$与$\overrightarrow{b}$互相平行,则$\overrightarrow{a}$与$\overrightarrow{b}$方向相同或相反,正确;
②若$\overrightarrow{AB}$与$\overrightarrow{CD}$共线,则点A,B,C,D共线,不正确,比如平行四边形的对边;
③若四边形ABCD为平行四边形,则$\overrightarrow{AB}$=$\overrightarrow{DC}$,不正确;
④若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$,正确;
⑤在四边形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{DC}$,且|$\overrightarrow{AB}$|=|$\overrightarrow{AD}$|,则四边形ABCD为正方形或菱形,不正确;
⑥$\overrightarrow{a}$与$\overrightarrow{b}$方向相同且|$\overrightarrow{a}$|=|$\overrightarrow{b}$|与$\overrightarrow{a}$=$\overrightarrow{b}$是一致的,正确.
故答案为:①④⑥.
点评 本题考查命题的真假判断,考查向量共线、相等的定义,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | {2,3,4} | B. | {1,4,6} | C. | {4,5,7,8} | D. | {1,2,3,6} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-3,1,5) | B. | (-3,-1,5) | C. | (3,-1,-5) | D. | (-3,1,-5) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com