精英家教网 > 高中数学 > 题目详情

正三棱柱ABC-A1B1C1中,AA1=AB,则异面直线AB1与BC所成的角的大小为________.(结果用反三角表示)


分析:由于BC∥B1C1,所以∠AB1C(或其补角)为异面直线AB1与BC所成的角的平面角.在△AB1C 中求解即可.
解答:∵BC∥B1C1,∴∠AB1C(或其补角)为异面直线AB1与BC所成的角的平面角.
设AA1=AB=1.则在△AB1C1中,AB1=,BC=1,AC1=,由余弦定理得cos∠AB1C==.∴∠AB1C=arccos
异面直线AB1与BC所成的角的大小为arccos
故答案为:arccos
点评:本题考查异面直线夹角的大小计算,利用定义转化成平面角,是基本解法.找平行线是解决问题的一个重要技巧,一般的“遇到中点找中点,平行线即可出现”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在 正三棱柱ABC-A1 B1 C1中,底面边长为
2

(1)设侧棱长为1,求证A B1⊥B C1
(2)设A B1与B C1成600角,求侧棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1 B1 C1中,AA1=4,AB=2,M是AC的中点,点N在AA1上,AN=
1
4

(1)求BC1与侧面AC C1 A1所成角的正弦值;
(2)证明:MN⊥B C1
(3)求二面角C-C1B-M的平面角的正弦值,若在△A1B1C1中,
C1E
=
1
3
EA1
C1F
=
1
4
FB1
C1H
=x
C1A1
+y
C1B1
,求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在正三棱柱ABC-A1 B1 C1中,AB=数学公式=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源:1996年全国统一高考数学试卷(文科)(解析版) 题型:解答题

如图:在正三棱柱ABC-A1 B1 C1中,AB==a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

同步练习册答案