精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且过点

(1)求的方程;

(2)是否存在直线相交于两点,且满足:①为坐标原点)的斜率之和为2;②直线与圆相切,若存在,求出的方程;若不存在,请说明理由.

【答案】(1);(2).

【解析】试题分析:

(1)由离心率,已知点坐标代入得可解得得标准方程;

(2)存在性问题,假设直线存在,把代入的方程得,同时设,则可得,①

代入得出的一个等式,再由直线和圆相切又得一个等式,联立可解得,同时注意直线与椭圆相交的条件,如满足则说明存在.

试题解析:

(1)由已知得

解得,∴椭圆的方程为

(2)把代入的方程得:

,则,①

由已知得

,②

把①代入②得

,③

,得

由直线与圆相切,则

③④联立得(舍去)或,∴

∴直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的离心率为,且过点.

(1)求的方程;

(2)若动点在直线上,过作直线交椭圆两点,使得,再过作直线,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(2x﹣1)的定义域为[﹣1,4],则函数f(x)的定义域为(  )
A.(﹣3,7]
B.[﹣3,7]
C.(0,]
D.[0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次期末数学测试中,唐老师任教任教班级学生的成绩情况如下所示:

(1)根据上述表格,试估计唐老师所任教班级的学生在本次期末数学测试的平均成绩;

(2)现从成绩在中按照分数段,采取分层抽样随机抽取人,再在这人中随机抽取人作小题得分分析,求恰有人的成绩在上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线(其中为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求的直角坐标方程,并求的焦点的直角坐标;

(2)已知点,若直线相交于两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线x2 =1的左、右焦点分别为F1、F2 , 若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线(其中为参数, 为倾斜角).以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求的直角坐标方程,并求的焦点的直角坐标;

(2)已知点,若直线相交于两点,且,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的函数,满足f(x)=﹣f(﹣x),且当x<0时,f(x)=x ,则f(9)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形为菱形,四边形为矩形, 分别是 的中点, .

(Ⅰ)求证: 平面

(Ⅱ)若三棱锥的体积为,求的长.

查看答案和解析>>

同步练习册答案