精英家教网 > 高中数学 > 题目详情
下列结论中:
①定义在R上的任一函数,总可以表示成一个奇函数与一个偶函数的和;
②若f(3)=f(-3),则函数f(x)不是奇函数;
③对应法则和值域相同的两个函数的定义域也相同;
④若x1是函数f(x)的零点,且m<x1<n,那么f(m)•f(n)<0一定成立.
其中正确的是______(把你认为正确的序号全写上).
①设f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,则f(-x)=g(-x)+h(-x)=-g(x)+h(x),
两式联立得,g(x)=
f(x)-f(-x)
2
h(x)=
f(x)+f(-x)
2
,所以①正确.
②若函数f(x)是奇函数,则有f(-3)=-f(3),若f(3)=f(-3),则必有f(3)=f(-3)=0,所以当f(3)=f(-3)=0,函数有可能是奇函数,所以②错误.
③当函数的定义域和对应法则相同时,函数的值域相同,但值域相同时,定义域不一定相同,
比如函数f(x)=x2,当定义域为[0,1]时,值域为[0,1],当定义域为[-1,1]时,值域为[0,1],所以③错误.
④若x1是函数f(x)的零点,则根据根的存在性定理可知,f(m)•f(n)<0不一定成立,比如函数f(x)=x2的零点是0,但f(m)•f(n)>0,所以④错误.
故答案为:①
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在边长为4的正方形ABCD上有一点P,沿着折线BCDA由B点(起点)向A点(终点)移动,设P点移动的路程为x,△ABP的面积为y=f(x).
(1)求△ABP的面积与P移动的路程间的函数关系式;
(2)作出函数的图象,并根据图象求y的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x|x-2m|,常数m∈R.
(1)设m=0.求证:函数f(x)递增;
(2)设m=-1.求关于x的方程f(f(x))=0的解的个数;
(3)设m>0.若函数f(x)在区间[0,1]上的最大值为m2,求正实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=lnx-
1
x
的零点所在区间是(  )
A.(0,
1
2
)
B.(
1
2
,1)
C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对实数a和b,定义运算“?”:a?b=
a,a-b≤1
b,a-b>1
设函数f(x)=(x2-2)?(x-x2),x∈R,若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=ln
ex-e-x
ex+e-x
的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=2|x-3|-ogax+1无零点,则a的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

己知f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,则方程f(x)=0在区间[m,n]上(  )
A.至少有三个实数根B.至少有两个实根
C.有且只有一个实数根D.无实根

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数的图象如右图所示,则下列函数正确的是   (    )

查看答案和解析>>

同步练习册答案