精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=3sin(ωx+φ),g(x)=3cos(ωx+φ),若对任意x∈R,都有f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),则g($\frac{π}{6}$)=0.

分析 由题意可得f(x)的图象关于直线x=$\frac{π}{6}$对称,故有ω•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,由此求得g($\frac{π}{6}$)=3cos(ω•$\frac{π}{6}$+φ)的值.

解答 解:根据f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),可得f(x)的图象关于直线x=$\frac{π}{6}$对称,
∴ω•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴g($\frac{π}{6}$)=3cos(ω•$\frac{π}{6}$+φ)=0,
故答案为:0.

点评 本题主要考查正弦函数的图象的对称性,求三角函数的值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知命题p:?x∈R,sinx≤1,则¬p为(  )
A.?x∈R,sinx≤1B.?x∈R,sinx>1C.?x∈R,sinx≥1D.?x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线$\frac{x^2}{3}-{y^2}=1$的左焦点在抛物线y2=2px的准线上,则p的值为(  )
A.2B.3C.4D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知点A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R).若曲线x=$\sqrt{3-{y}^{2}}$上存在点B使∠APB=60°,则t的取值范围是(  )
A.(0,1+$\sqrt{3}$]B.[0,1+$\sqrt{3}$]C.[-1-$\sqrt{3}$,1+$\sqrt{3}$]D.[-1-$\sqrt{3}$,0)∪(0,1+$\sqrt{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点P(-1,5)的圆(x-1)2+(y-2)2=4的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大?
(2)在(1)的条件下,设取出的3个球中红球的个数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1,SB=$\sqrt{3}$.
(I)求证BC⊥SC; 
(Ⅱ)求平面SBC与平面ABCD所成二面角的大小;
(Ⅲ)设棱SA的中点为M,求异面直线DM与SB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=2sin(ωx+$\frac{π}{6}$)(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间为(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$]k∈ZB.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$]k∈Z
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$]k∈ZD.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“若x2=1,则x=1”的否命题为(  )
A.若x2≠1,则x=1B.若x2=1,则x≠1C.若x2≠1,则x≠1D.若x≠1,则x2≠1

查看答案和解析>>

同步练习册答案