分析 由题意可得f(x)的图象关于直线x=$\frac{π}{6}$对称,故有ω•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,由此求得g($\frac{π}{6}$)=3cos(ω•$\frac{π}{6}$+φ)的值.
解答 解:根据f($\frac{π}{6}$+x)=f($\frac{π}{6}$-x),可得f(x)的图象关于直线x=$\frac{π}{6}$对称,
∴ω•$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈Z,∴g($\frac{π}{6}$)=3cos(ω•$\frac{π}{6}$+φ)=0,
故答案为:0.
点评 本题主要考查正弦函数的图象的对称性,求三角函数的值,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | ?x∈R,sinx≤1 | B. | ?x∈R,sinx>1 | C. | ?x∈R,sinx≥1 | D. | ?x∈R,sinx>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | $4\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,1+$\sqrt{3}$] | B. | [0,1+$\sqrt{3}$] | C. | [-1-$\sqrt{3}$,1+$\sqrt{3}$] | D. | [-1-$\sqrt{3}$,0)∪(0,1+$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$]k∈Z | B. | [kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$]k∈Z | ||
C. | [kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$]k∈Z | D. | [kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$]k∈Z |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com