精英家教网 > 高中数学 > 题目详情
11.函数f(x)的定义域为R,并满足以下条件:
①对任意的x∈R,有f(x)>0;
②对任意的x,y∈R,都有f(xy)=[f(x)]y
③$f(\frac{1}{3})>1$.
(Ⅰ)求f(0)的值;
(Ⅱ)判断并证明函数f(x)在R上的单调性;
(Ⅲ)解关于x的不等式:[f(x-1)](x+1)>1.

分析 (Ⅰ)可以令y=0,代入f(xy)=[f(x)]y,即可求得f(0)的值;
(Ⅱ)任取x1,x2∈R,且x1<x2,可令x1=$\frac{1}{3}$P1,x2=$\frac{1}{3}$P2,故p1<p2,再判断f(x1)-f(x2)的符号,从而可证其单调性;,
(Ⅲ)利用条件得到f(x2-1)>f(0),根据f(x)是增函数代入不等式,解不等式即可.

解答 解:(1):(Ⅰ)∵对任意x∈R,有f(x)>0,
∴令x=0,y=2得:f(0)=[f(0)]2⇒f(0)=1;
(Ⅱ)任取x1,x2∈R,且x1<x2,则令x1=$\frac{1}{3}$P1,x2=$\frac{1}{3}$P2,故p1<p2
∵函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③$f(\frac{1}{3})>1$
∴f(x1)-f(x2)=f($\frac{1}{3}$P1)-f($\frac{1}{3}$P2)=[f($\frac{1}{3}$)]P1-[f($\frac{1}{3}$)]P2<0,
∴f(x1)<f(x2),
∴函数f(x)是R上的单调增函数.
(Ⅲ)∵f(0)=1,:[f(x-1)](x+1)>1.
∴[f(x-1)](x+1)=f((x-1)(x+1))>f(0).
∴x2-1>0,
解得x<-1,或x>1,
∴不等式的解集为(-∞,-1)∪(1,+∞).

点评 本题给出抽象函数,求特殊的函数值,根据函数的单调性并依此解关于x的不等式.着重考查了函数的单调性及其应用、基本初等函数的图象与性质和抽象函数具体化的处理等知识点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的函数f(x)的图象是连续不断的,且有如下对应值表:
x123
f(x)3.42.6-3.7
则函数f(x)一定存在零点的区间是(  )
A.(-∞,1)B.(1,2)C.(2,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知向量|$\overrightarrow{a}$|=2,(2$\overrightarrow{a}$-$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$)=-1,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则|$\overrightarrow{b}$|等于(  )
A.1B.3C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,a、b、c分别是角A、B、C的对边,且$\frac{cosB}{cosC}=\frac{b}{2a-c}$.
(1)求角B的大小;
(2)若b=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义:若函数f(x)与g(x)有共同的解析式和值域,则称f(x)与g(x)是“相似函数”,若f(x)=x2+1,x∈{±1,±2},则与f(x)相似的函数有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a=ln$\frac{1}{2}$,b=e${\;}^{\frac{1}{2}}$,c=2-e(e≈2.71828…),则a,b,c的大小关系为(  )
A.b<a<cB.a<b<cC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果如图程序运行后输出的结果是132,那么在程序中while后面的表达式应为(  )
A.i>11B.i≥11C.i≤11D.i<11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.两圆x2+y2=9和x2+y2-8x+6y+9=0的公切线条数是(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=x•1nx,g(x)=ax2-2ax+1.
(1)求函数f(x)的单调区间;
(2)若x∈[1,2],a∈[1,2],求证:f(x)≥g(x).

查看答案和解析>>

同步练习册答案