精英家教网 > 高中数学 > 题目详情
5、设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相连能构成四边形,则向量d为(  )
分析:向量首尾相连,构成封闭图形,则四个向量的和是零向量,用题目给出的三个点的坐标,再设出要求的坐标,写出首尾相连的四个向量的坐标,让四个向量相加结果是零向量,解出设的坐标.
解答:解:设d=(x,y),
∵4a=(4,-12),4b-2c=(-6,20)
2(a-c)=(4,-2),
∴有4a+(4b-2c)+2(a-c)+d=0,
∴x=-2,y=-6,
故选D
点评:本题只是简单的应用向量的加法,其实能与向量与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视.数量积的主要应用:①求模长;②求夹角;③判垂直
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(-1,3,2),
b
=(4,-6,2),
c
=(-3,12,t),若
c
=m
a
+n
b
,则t=
 
,m+n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

4、设向量a=(1,-3),b=(-2,4),若表示向量4a、3b-2a、c的有向线段首尾相接能构成三角形,则向量c为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量 
a
=(m+1,-3),
b
=(1,m-1),若
向量(
a
+
b
)⊥(
a
-
b
),求m的值

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量a=(1,-3),b=(-2,4),若表示向量4a、3b-2ac的有向线段首尾相接能构成三角形,则向量c为(    )

A.(1,-1)           B.(-1,1)               C.(-4,6)           D.(4,-6)

查看答案和解析>>

同步练习册答案