精英家教网 > 高中数学 > 题目详情

【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

【答案】
(1)解:由已知得,抽取的100名学生中,男生60名,女生40名,

分数小于等于110分的学生中,

男生人有60×0.05=3(人),记为A1,A2,A3

女生有40×0.05=2(人),记为B1,B2

从中随机抽取2名学生,所有的可能结果共有10种,它们是:

(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),

(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2);

其中,两名学生恰好为一男一女的可能结果共有6种,它们是:

(A1,B1),(A1,B2),(A2,B1),

(A2,B2),(A3,B1),(A3,B2

故所求的概率为P= =


(2)解:由频率分布直方图可知,

在抽取的100名学生中,男生 60×0.25=15(人),女生40×0.375=15(人);…

据此可得2×2列联表如下:

数学尖子生

非数学尖子生

合计

男生

15

45

60

女生

15

25

40

合计

30

70

100

所以得K2= = ≈1.79;…

因为1.79<2.706,

所以没有90%的把握认为“数学尖子生与性别有关”


【解析】(1)根据分层抽样原理计算抽取的男、女生人数,利用列举法计算基本事件数,求出对应的概率值;(2)由频率分布直方图计算对应的数据,填写列联表,计算K2值,对照数表即可得出概率结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛.该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛.先将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.

分数(分数段)

频数(人数)

频率

[60,70)

9

x

[70,80)

y

0.38

[80,90)

16

0.32

[90,100)

z

s

合计

p

1

(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一二班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一二班在决赛中进入前三名的人数为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大小;
(Ⅱ)若 ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(﹣1,0),B(1,0), = + ,| |+| |=4
(1)求P的轨迹E
(2)过轨迹E上任意一点P作圆O:x2+y2=3的切线l1 , l2 , 设直线OP,l1 , l2的斜率分别是k0 , k1 , k2 , 试问在三个斜率都存在且不为0的条件下, + )是否是定值,请说明理由,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学参加了今年重庆市举办的数学、物理、化学三门学科竞赛的初赛,在成绩公布之前,老师估计他能进复赛的概率分别为,且这名同学各门学科能否进复赛相互独立.

(1)求这名同学三门学科都能进复赛的概率;

(2)设这名同学能进复赛的学科数为随机变量X,求X的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足

(Ⅰ)当时,解不等式

(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;

(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,通常将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.最小覆盖圆满足以下性质:①线段的最小覆盖圆就是以为直径的圆;②锐角的最小覆盖圆就是其外接圆.已知曲线为曲线上不同的四点.

(Ⅰ)求实数的值及的最小覆盖圆的方程;

(Ⅱ)求四边形的最小覆盖圆的方程;

(Ⅲ)求曲线的最小覆盖圆的方程.

查看答案和解析>>

同步练习册答案