精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°。
(1)证明:平面ADB⊥平面BDC;
(2 )设BD=1,求三棱锥D—ABC的表面积。
 
20.【解】(1)∵折起前AD是BC边上的高,
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,………2分
又DBDC=D,…………3分
∴AD⊥平面BDC,又∵AD 面ABD
…………………………………5分
∴平面ABD⊥平面BDC.………6分
(2)由(1)知,DA,,,
DB=DA=DC=1,AB=BC=CA=,……7分
,
………10分
∴三棱锥D—ABC的表面积是………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知二面角的大小为,点上,,,,则异面直线所成角的余弦值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD,若直线AB、AC、AD与平面BCD所成角都相等,则A点在平面BCD的射影为的(   )
A.外心               B.内心              C.重心              D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线不重合,平面不重合,下列命题正确的是  (   )
A.若,则
B.若,则
C.若,则
D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图和三视图如图所示,其中分别是的中点,上的一动点.
(1)求证:
(2)当时,在棱上确定一点,使得//平面,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

四面体P-ABC中,M为棱AB的中点,则PB与CM所成角的余弦值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本题12分)如图2,在棱长为1的正方体ABCD—A1B1C1D1中,点E、F、G分别是DD1、BD、BB1的中点。
(Ⅰ)求直线EF与直线CG所成角的余弦值;
(Ⅱ)求直线C1C与平面GFC所成角的正弦值;
(Ⅲ)求二面角E—FC—B的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条异面直线平面,则的位置关系是(  )
A.平面B.与平面相交C.平面D.以上都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,中,,分别过作平面的垂线,连结交于点.
(Ⅰ)设点中点,若,求证:直线与平面平行;
(Ⅱ)设中点,二面角等于,求直线与平面所成角
的大小.

查看答案和解析>>

同步练习册答案