【题目】已知函数,,如果对于定义域内的任意实数,对于给定的非零常数,总存在非零常数,恒有成立,则称函数是上的级类增周期函数,周期为,若恒有成立,则称函数是上的级类周期函数,周期为.
(1)已知函数是上的周期为1的2级类增周期函数,求实数的取值范围;
(2)已知,是上的级类周期函数,且是上的单调增函数,当时,,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆的离心率为,右准线的方程为分别为椭圆C的左、右焦点,A,B分别为椭圆C的左、右顶点.
(1)求椭圆C的标准方程;
(2)过作斜率为的直线l交椭圆C于M,N两点(点M在点N的左侧),且,设直线AM,BN的斜率分别为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中华文化博大精深,源远流长,每年都有大批外国游客入境观光旅游或者学习等,下面是年至年三个不同年龄段外国入境游客数量的柱状图:
下面说法错误的是:( )
A.年至年外国入境游客中,岁年龄段人数明显较多
B.年以来,三个年龄段的外国入境游客数量都在逐年增加
C.年以来,岁外国入境游客增加数量大于岁外国入境游客增加数量
D.年,岁外国入境游客增长率大于岁外国入境游客增长率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“五行”是中国古代哲学的一种系统观,广泛用于中医、堪舆、命理、相术和占卜等方面.古人把宇宙万物划分为五种性质的事物,也即分成木、火、土、金、水五大类,并称它们为“五行”.中国古代哲学家用五行理论来说明世界万物的形成及其相互关系,创造了五行相生相克理论.相生,是指两类五行属性不同的事物之间存在相互帮助,相互促进的关系,具体是:木生火,火生土,土生金,金生水,水生木.相克,是指两类五行属性不同的事物之间是相互克制的关系,具体是:木克土,土克水,水克火、火克金、金克木.现从分别标有木,火,土,金,水的根竹签中随机抽取根,则所抽取的根竹签上的五行属性相克的概率为___________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知圆,圆,动圆与圆外切并且与圆内切,圆心的轨迹为曲线.
(Ⅰ)求的方程;
(Ⅱ)是与圆,圆都相切的一条直线,与曲线交于,两点,当圆的半径最长时,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r﹣1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6;
(3)已知数列{an}为“r关联数列”,且a1=﹣10,是否存在正整数k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成,,,,,,组,得到如图所示的频率分布直方图.若尺寸落在区间之外,则认为该零件属“不合格”的零件,其中,分别为样本平均和样本标准差,计算可得(同一组中的数据用该组区间的中点值作代表).
(1)若一个零件的尺寸是,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前组中抽出个零件,标上记号,并从这个零件中再抽取个,求再次抽取的个零件中恰有个尺寸小于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在上的函数,满足.
(1)证明:2是函数的周期;
(2)当时,,求在时的解析式,并写出在()时的解析式;
(3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com