A. | (1,2) | B. | (1,2$\sqrt{3}$) | C. | (2,4) | D. | (2,4$\sqrt{3}$) |
分析 由已知条件C的度数,AB及BC的值,根据正弦定理用a表示出sinA,由C的度数及正弦函数的图象可知满足题意△ABC有两个A的范围,然后根据A的范围,利用特殊角的三角函数值即可求出sinA的范围,进而求出a的取值范围.
解答 解:∵C=30°,AB=2,BC=a,
∴由正弦定理得:$\frac{AB}{sinC}=\frac{BC}{sinA}$,即 $\frac{2}{\frac{1}{2}}$=$\frac{a}{sinA}$=4,
解得:sinA=$\frac{a}{4}$,
由题意得:当sinA∈($\frac{1}{2}$,1)时,满足条件的△ABC有两个,
解得:2<a<4,
则a的取值范围是(2,4).
故选:C.
点评 此题属于解三角形的题型,涉及的知识有:正弦定理,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
优秀 | 非优秀 | 合计 | |
甲班 | 10 | 40 | 50 |
乙班 | 20 | 30 | 50 |
合计 | 30 | 70 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com