精英家教网 > 高中数学 > 题目详情
16.设等差数列{an}的前n项和为Sn,若a3=-11,a6+a10=-2,则当Sn取最小值时,n的值为(  )
A.7B.8C.9D.10

分析 利用等差数列的通项公式可得an,令an≥0,解出即可得出.

解答 解:设等差数列{an}的公差为d,∵a3=-11,a6+a10=-2,
∴$\left\{\begin{array}{l}{{a}_{1}+2d=-11}\\{2{a}_{1}+14d=-2}\end{array}\right.$,
解得a1=-15,d=2,
∴an=-15+2(n-1)=2n-17,
令an≥0,解得n≥$\frac{17}{2}$,
则当Sn取最小值时,n=8.
故选:B.

点评 本题考查了等差数列的通项公式及其单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的方程;$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),F(1,0)是它的一个焦点.
(1)当a=$\sqrt{2}$时,圆O;x2+y2=1的切线与椭圆C交于P,Q两点,且满足$\frac{2}{3}≤\overrightarrow{OP}•\overrightarrow{OQ}≤\frac{3}{4}$,求△POQ面积的最小值;
(2)设过椭圆C的右焦点F的直线L交椭圆于A,B两点,若直线l绕点F任意转动,都有|$\overrightarrow{OA}$|2+|$\overrightarrow{OB}$|2<|$\overrightarrow{AB}$|2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=x3+f′($\frac{2}{3}$)x2-x,则f(x)的图象在点($\frac{2}{3}$,f($\frac{2}{3}$))处的切线斜率是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(m,2m-3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则m的值为(  )
A.-$\frac{9}{7}$B.$\frac{9}{7}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(log2x-2)(log4x-$\frac{1}{2}$).
(1)当x∈[1,4]时,求该函数的值域;
(2)若f(x)≤mlog2x对于x∈[4,16]恒成立,求m得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)在x=1处可导,则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{2△x}$等于$\frac{1}{2}$f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),求$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga$\frac{x-2}{x+2}(a>0$且a≠1).
(1)求f(x)的定义域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{a+b-c}{a+b}$.
(1)求角A的大小;
(2)若B=$\frac{π}{2}$,AB=4$\sqrt{3}$,点D是斜边AC上的一个动点,连接BD,以BD为折痕,将△BDA翻折,使点A落在平面BCD内点A1处,连接A1C,如图,求A1C的最小值.

查看答案和解析>>

同步练习册答案