精英家教网 > 高中数学 > 题目详情
18.在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是(  )
A.B.C.D.

分析 根据题意,画出几何体的图形,容易得出圆柱与棱锥的截面图形.

解答 解:由题意作出图形,如图所示;
SO⊥底面BPM,过侧棱SB与高的平面ABCD
截得圆柱与圆柱内接正三棱锥S-BPM,
截面图形为D选项.
故选:D.

点评 本题考查了三棱锥的结构特征以及圆柱的内接三棱锥的应用问题,与考查空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若g(x)=1-2x,f[g(x)]=$\frac{1-x}{1+x}$,则f(4)=(  )
A.-5B.5C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$f(x+\frac{1}{x})={x^2}+\frac{1}{x^2}$,则函数f(x)=(  )
A.x2-2(x≠0)B.x2-2(x≥2)C.x2-2(|x|≥2)D.x2-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,在正四棱锥S-ABCD中,E,M,N分别是B,CD,SC的中点,P在线段MN上且NP=2PM,下列四个结论:
①EP⊥AC;②EP⊥面SAC;③EP∥BD;④EP∥面SBD中成立的为(  )
A.①③B.①②C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知{an}是递增的等差数列,a1=2,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=2an+an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+(a+1)x+lg|a+2|(a∈R,且a≠-2).
(1)若f(x)能表示成一个奇函数g(x)和一个偶函数h(x)的和,求g(x)和h(x)的解析式;
(2)已知P={a|函数f(x)在区间[(a+1)2,+∞)上是增函数};Q={a|函数g(x)是减函数}.求(P∩CRQ)∪(Q∩CRP);
(3)在(2)的条件下,比较f(2)与3-lg2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\frac{x+b}{(2x+1)(x-a)}$为奇函数,则a+b=(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求由下列函数的导数$\frac{dy}{dx}$:
(1)y=$\sqrt{xsinx\sqrt{1-{e}^{x}}}$
(2)y=$\frac{\sqrt{x+2}(3-x)^{4}}{(x+1)^{5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知tan(π-α)=-$\frac{1}{2}$,求$\frac{2sin(π-α)-3cos(π+α)}{3cos(π-α)+4cos(\frac{π}{2}+α)}$.

查看答案和解析>>

同步练习册答案