精英家教网 > 高中数学 > 题目详情

【题目】如图,在正△ABC,D,E分别在边AC, AB,AD=AC,AE=AB,BD,CE相交于点F.

)求证:A,E,F,D四点共圆;

)若正△ABC的边长为2,A,E,F,D所在圆的半径.

【答案】(1)证明过程详见解析;(2.

【解析】试题本题以正三角形为几何背景,考查四点共圆问题以及相似三角形问题,考查学生的转化与化归的能力.第一问,利用已知条件中边的比例关系可得出结论,再利用三角形相似,得出,所以,所以可证四点共圆;第二问,根据所给正三角形的边长为2,利用已知的比例关系,得出各个小边的长度,从而得出为正三角形,所以得出,所以所在圆的圆心,而是半径,即为.

试题解析:(Ⅰ)证明:∵, ∴,

在正,, ∴,

,, ∴, ∴,

,所以四点共圆. 5

(Ⅱ):如图,

的中点,连接,,

, ∴,

,, ∴为正三角形,

,,

所以点外接圆的圆心,且圆的半径为.

由于四点共圆,四点共圆,其半径为. 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若直线过焦点且与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】递增的等差数列的前项和为.是方程的两个实数根.

1)求数列的通项公式;

2)当为多少时,取最小值,并求其最小值;

3)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.

x(万元)

3

5

7

9

11

y(万元)

8

10

13

17

22

1)求y关于x的线性回归方程;

2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?

相关公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中有个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.

(1)试用含的代数式表示一次摸球中奖的概率

(2)若,求三次摸球恰有一次中奖的概率;

(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的个数是_________.

1)命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则.

2)命题“”的否定“.

3)若为假命题,则均为假命题.

4)“”是“直线与直线平行”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P—ABCD中,底面ABCD是菱形,∠ABC=60°,PA=AC,PB=PD=AC,EPD的中点,求证:

(1)PB∥平面ACE;

(2)平面PAC⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为 分别是的中点,点在棱

上, ).

)三棱锥的体积分别为,当为何值时, 最大?最大值为多少?

)若平面,证明:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,为椭圆短轴的一个端点,为椭圆的左、右焦点,线段的延长线与椭圆相交于点,且.

1)求椭圆的方程;

2)如图,点为椭圆上一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,求面积的最大值.

查看答案和解析>>

同步练习册答案