16£®Ä³³§Éú²úijÖÖÍæ¾ß£¬Ã¿¸öÍæ¾ßµÄ³É±¾Îª40Ôª£¬³ö³§µ¥¼Û¶¨Îª60Ôª£¬¸Ã³§Îª¹ÄÀøÏúÊÛÉ̶©¹º£¬¾ö¶¨µ±Ò»´Î¶©¹ºÁ¿³¬¹ý100¸öʱ£¬Ã¿¶à¶©¹ºÒ»¸ö£¬¶©¹ºµÄÈ«²¿Íæ¾ßµÄ³ö³§µ¥¼Û¾Í½µµÍ0.02Ôª£¬µ«Êµ¼Ê³ö³§µ¥¼Û²»ÄܵÍÓÚ51Ôª£®
£¨1£©µ±Ò»´Î¶©¹ºÁ¿Îª¶àÉÙ¸öʱ£¬Íæ¾ßµÄʵ¼Ê³ö³§µ¥¼ÛÇ¡½µÎª51Ôª£¿
£¨2£©ÉèÒ»´Î¶©¹ºÁ¿Îªx¸ö£¬Íæ¾ßµÄʵ¼Ê³ö³§µ¥¼ÛΪPÔª£¬Çóº¯ÊýP=f£¨x£©µÄ±í´ïʽ£»
£¨3£©Èç¹ûÒ»´Î¶©¹ºÁ¿Îªx¸öʱ£¬¹¤³§»ñµÃµÄÀûÈóΪLÔª£¬Ð´³öº¯ÊýL=g£¨x£©µÄ±í´ïʽ£»²¢¼ÆËãµ±ÏúÊÛÉÌÒ»´Î¶©¹º500¸öÍæ¾ßʱ£¬¸Ã³§»ñµÃµÄÀûÈóÊǶàÉÙÔª£¿Èç¹û¶©¹º1000¸ö£¬ÀûÈóÓÖÊǶàÉÙÔª£¿£¨¹¤³§ÊÛ³öÒ»¸öÍæ¾ßµÄÀûÈó=ʵ¼Ê³ö³§µ¥¼Û-³É±¾£©

·ÖÎö £¨1£©Éèÿ¸öÁã¼þµÄʵ¼Ê³ö³§¼ÛÇ¡ºÃ½µÎª51Ԫʱ£¬Çó³öÒ»´Î¶©¹ºÁ¿Îªx0¸öʱ£¬Ã¿¸öÁã¼þµÄʵ¼Ê³ö³§¼ÛÇ¡ºÃ½µÎª51Ôª£®
£¨2£©ÀûÓ÷ֶκ¯ÊýÇó³öº¯ÊýµÄ½âÎöʽ$P=f£¨x£©=\left\{\begin{array}{l}60&0£¼x¡Ü100\\ 62-\frac{x}{50}&100£¼x£¼550£¨x¡ÊN£©\\ 51&x¡Ý550\end{array}\right.$£®
£¨3£©ÉèÏúÊÛÉ̵ÄÒ»´Î¶©¹ºÁ¿Îªx¸öʱ£¬¹¤³§»ñµÃµÄÀûÈóΪLÔª£¬ÀûÓù¤³§ÊÛ³öÒ»¸öÍæ¾ßµÄÀûÈó=ʵ¼Ê³ö³§µ¥¼Û-³É±¾£¬Áгö¹Øϵʽ£¬È»ºóÇó½â×îÖµ£®

½â´ð ½â£º£¨1£©Éèÿ¸öÁã¼þµÄʵ¼Ê³ö³§¼ÛÇ¡ºÃ½µÎª51Ԫʱ£¬Ò»´Î¶©¹ºÁ¿Îªx0¸ö£¬Ôò${x_0}=100+\frac{60-51}{0.02}=550$
Òò´Ë£¬µ±Ò»´Î¶©¹ºÁ¿Îª550¸öʱ£¬Ã¿¸öÁã¼þµÄʵ¼Ê³ö³§¼ÛÇ¡ºÃ½µÎª51Ôª¡­£¨2·Ö£©
£¨2£©µ±0£¼x¡Ü100ʱ£¬P=60¡­£¨3·Ö£©
µ±100£¼x£¼550ʱ£¬$P=60-0.02£¨x-100£©=62-\frac{x}{50}$¡­£¨4·Ö£©
µ±x¡Ý550ʱ£¬P=51¡­£¨5·Ö£©
ËùÒÔ$P=f£¨x£©=\left\{\begin{array}{l}60&0£¼x¡Ü100\\ 62-\frac{x}{50}&100£¼x£¼550£¨x¡ÊN£©\\ 51&x¡Ý550\end{array}\right.$¡­£¨6·Ö£©
£¨3£©ÉèÏúÊÛÉ̵ÄÒ»´Î¶©¹ºÁ¿Îªx¸öʱ£¬¹¤³§»ñµÃµÄÀûÈóΪLÔª£¬
ÔòL=g£¨x£©=$\left\{\begin{array}{l}20x£¨0£¼x¡Ü100£©\\ 22x-\frac{x}{50}£¨100£¼x£¼550£©x¡ÊN\\ 11x£¨x¡Ý550£©\end{array}\right.$¡­£¨8·Ö£©
µ±x=500ʱ£¬L=6000£»µ±x=1000ʱ£¬L=11000
Òò´Ë£¬ÏúÊÛÉÌÒ»´Î¶©¹º500¸öÁã¼þʱ£¬¸Ã³§»ñµÃµÄÀûÈóÊÇ6000Ôª£»
Èç¹û¶©¹º1000¸ö£¬ÀûÈóÊÇ11000Ôª¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²éº¯ÊýµÄ½âÎöʽµÄÇ󷨣¬Êµ¼ÊÎÊÌâµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®·½³Ì$\frac{9}{x}$=lgx±ØÓÐÒ»¸ö¸ùµÄÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨6£¬7£©B£®£¨7£¬8£©C£®£¨8£¬9£©D£®£¨9£¬10£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨cos¦Á£¬1-sin¦Á£©£¬$\overrightarrow{n}$=£¨-cos¦Á£¬sin¦Á£©£¨¦Á¡ÊR£©£®
£¨1£©Èô$\overrightarrow{m}$¡Í$\overrightarrow{n}$£¬Çó½Ç¦ÁµÄÖµ£»
£¨2£©Èô|$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{3}$£¬Çócos2¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª¡÷ABCµÄÍâ½ÓÔ²°ë¾¶Îª1£¬Ô²ÐÄΪO£¬ÇÒ3$\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow{0}$£¬Ôò¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{8}{5}$B£®$\frac{7}{5}$C£®$\frac{6}{5}$D£®$\frac{4}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=x2-2x£¨-1¡Üx¡Ü2£¬x¡ÊZ£©£¬Ôòº¯Êýf£¨x£©µÄÖµÓòÊÇ£¨¡¡¡¡£©
A£®[0£¬3]B£®[-1£¬3]C£®{-1£¬0£¬3}D£®{0£¬1£¬3}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÃüÌâ¡°Éè a¡¢b¡¢c¡ÊR£¬Èôac2£¾bc2 Ôò a£¾b¡±µÄÔ­ÃüÌâ¡¢ÄæÃüÌâ¡¢·ñÃüÌâÖУ¬ÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®0¸öB£®1¸öC£®2¸öD£®3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚ£¨1+x+x2£©n=D${\;}_{n}^{0}$+D${\;}_{n}^{1}$x+D${\;}_{n}^{2}$x2+¡­+D${\;}_{n}^{r}$xr+¡­+D${\;}_{n}^{2n-1}$x2n-1+D${\;}_{n}^{2n}$x2nµÄÕ¹¿ªÊ½ÖУ¬°ÑD${\;}_{n}^{0}$£¬D${\;}_{n}^{1}$£¬D${\;}_{n}^{2}$£¬¡­£¬D${\;}_{n}^{2n}$½Ð×öÈýÏîʽϵÊý£®
£¨1£©µ±n=2ʱ£¬Ð´³öÈýÏîʽϵÊýD${\;}_{2}^{0}$£¬D${\;}_{2}^{1}$£¬D${\;}_{2}^{2}$£¬D${\;}_{2}^{3}$£¬D${\;}_{2}^{4}$µÄÖµ£»
£¨2£©Àà±È¶þÏîʽϵÊýÐÔÖÊC${\;}_{n+1}^{m}$=C${\;}_{n}^{m-1}$+C${\;}_{n}^{m}$£¨1¡Üm¡Ün£¬m¡ÊN£¬n¡ÊN£©£¬¸ø³öÒ»¸ö¹ØÓÚÈýÏîʽϵÊýD${\;}_{n+1}^{m+1}$£¨1¡Üm¡Ü2n-1£¬m¡ÊN£¬n¡ÊN£©µÄÏàËÆÐÔÖÊ£¬²¢ÓèÒÔÖ¤Ã÷£»
£¨3£©ÇóD${\;}_{2015}^{0}$C${\;}_{2015}^{0}$-D${\;}_{2015}^{1}$C${\;}_{2015}^{1}$+D${\;}_{2015}^{2}$C${\;}_{2015}^{2}$-¡­+£¨-1£©kD${\;}_{2015}^{k}$C${\;}_{2015}^{k}$+¡­+D${\;}_{2015}^{2014}$C${\;}_{2015}^{2014}$-D${\;}_{2015}^{2015}$C${\;}_{2015}^{2015}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔÚ£¨2x2-$\frac{1}{3\sqrt{x}}$£©nµÄÕ¹¿ªÊ½Öк¬³£ÊýÏÔòÕýÕûÊýnµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¶ÔÓÚº¯Êýf£¨x£©¶¨ÒåÓòÖÐÈÎÒâµÄx1£¬x2£¨x1¡Ùx2£©£¬ÓÐÈçϽáÂÛ£º
 ¢Ùf£¨x1+x2£©=f£¨x1£©f£¨x2£©£»
¢Úf£¨x1x2£©=f£¨x1£©+f£¨x2£©£»
 ¢Û$\frac{{f£¨{x_1}£©-f£¨{x_2}£©}}{{{x_1}-{x_2}}}£¾0$£®
µ±f£¨x£©=exʱ£¬ÉÏÊö½áÂÛÖÐÕýÈ·½áÂÛµÄÐòºÅÊÇ¢Ù¢Û£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸