精英家教网 > 高中数学 > 题目详情

如图,圆O与离心率为的椭圆T:)相切于点M

⑴求椭圆T与圆O的方程;
⑵过点M引两条互相垂直的两直线与两曲线分别交于点A、C与点B、D(均不重合)。
①若P为椭圆上任一点,记点P到两直线的距离分别为,求的最大值;
②若,求的方程。

(1)椭圆的方程为与圆的方程为;(2)①;②的方程为的方程为的方程为的方程为

解析试题分析:(1)圆的圆心在原点,又过点为,方程易求,而椭圆过点,这实质是椭圆短轴的顶点,因此,又离心率,故也易求得,其标准方程易得.(2)①看到点到直线的距离,可能立即想到点到直线的距离公式,当然如果这样做的话,就需要求出直线方程,过程相对较难,考虑到直线,由所作的两条垂线,与直线围成一个矩形,从而,我们只要设点坐标为,则,再由点在椭圆上,可把表示为的函数,从而求出最大值.②这题考查同学们的计算能力,设直线的斜率为,得直线方程,与圆方程和椭圆方程分别联立方程组,求出点坐标,点坐标,同样求出的坐标,再利用已知条件求出,得到直线的方程.
试题解析:(1)由题意知: 解得可知:
椭圆的方程为与圆的方程           4分
(2)①设因为,则因为
所以,           7分
因为  所以当取得最大值为,此时点    9分
②设的方程为,由解得
解得          11分
中的置换成可得      12分
所以

解得        15分
所以的方程为的方程为
的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆
的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,设点B,C是直线上的两点,它们的横坐标分别是,点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若,求直线的方程;
(2)经过三点的圆的圆心是,求线段(为坐标原点)长的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过点,且圆心在直线上。
(I)求圆的方程;
(II)问是否存在满足以下两个条件的直线: ①斜率为;②直线被圆截得的弦为,以为直径的圆过原点. 若存在这样的直线,请求出其方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆的圆心与点关于直线对称,直线与圆相交于两点,且,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点和圆

(Ⅰ)过点的直线被圆所截得的弦长为,求直线的方程;
(Ⅱ)若的面积,且是圆内部第一、二象限的整点(平面内横、纵坐标均为整数
的点称为整点),求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆,直线 与圆交与两点,点.
(1)当时,求的值;
(2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆及直线. 当直线被圆截得的弦长为时, 求(1)的值; (2)求过点并与圆相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为2的圆的方程.

查看答案和解析>>

同步练习册答案