精英家教网 > 高中数学 > 题目详情
12.在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,BA⊥AD,AD∥BC,AB=2,BC=1,PA=AD=3,E是PD上一点,且CE∥平面PAB,则C到面ABE的距离为$\frac{{2\sqrt{5}}}{5}$.

分析 过点C作CF⊥AD于F,过F作EF⊥AD交PD于E,则EF⊥平面ABCD,由等体积,即可求出结果.

解答 解:过点C作CF⊥AD于F,过F作EF⊥AD交PD于E,
则EF⊥平面ABCD,
∵PA⊥底面ABCD,∴EF∥PA,
∵BA⊥AD,CF⊥AD,∴AB∥FC,
∵PA∩AB=A,EF∩FC=F,PA,AB?平面PAB,EF,FC?平面EFC,
∴平面PAB∥平面EFC,
∵CE?平面EFC,∴CE∥平面PAB,
∴EF=2,
设C到面ABE的距离为h,则
由VC-ABE=VE-ABC,可得$\frac{1}{3}×\frac{1}{2}×2×\sqrt{5}h=\frac{1}{3}×\frac{1}{2}×1×2×2$
∴h=$\frac{{2\sqrt{5}}}{5}$.
故答案为:$\frac{{2\sqrt{5}}}{5}$

点评 本题考查三棱锥的体积的求法,考查C到面ABE的距离,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.平面内2条相交直线最多有1个交点;3条相交直线最多有3个交点;试猜想6条相交直线最多有15个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)满足?a、b∈R,都有$3f(\frac{a+2b}{3})=f(a)+2f(b)$,且f(1)=1,f(4)=7,则f(2017)=4033.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,得到用户对产品满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.

B地区用户满意度评分的频数分布表:
满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]
频数2814106
(1)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分表,将用户的满意度分为三个等级:
满意度评分低于70分70分到89分不低于90分
满意度等级不满意满意非常满意
估计那个地区用户的满意度等级为不满意的概率大?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的x等于(  )
A.16B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow a=(1,1),\overrightarrow b=(1,-1)$,则$\overrightarrow a•(\overrightarrow a-2\overrightarrow b)$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对函数f(x)=$\left\{\begin{array}{l}{-x+1,x>0}\\{-x-1,x≤0}\end{array}\right.$性质,下列叙述正确为(  )
A.奇函数B.减函数
C.既是奇函数又是减函数D.不是奇函数也不是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$A=\left\{{x\left|{{3^x}<1}\right.}\right\},B=\left\{{x\left|{y=\sqrt{x+3}}\right.}\right\}$,则A∩B=(  )
A.[-3,0)B.[-3,0]C.(0,+∞)D.[-3,+∞)

查看答案和解析>>

同步练习册答案