精英家教网 > 高中数学 > 题目详情
12.设变量x,y满足约束条件$\left\{\begin{array}{l}x≥0\\ y≥3x\\ x+ay≤7\end{array}\right.$,若目标函数z=x+y的最大值为14,则a值为(  )
A.1B.$\frac{1}{2}$或$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 作出可行域,变形目标函数并平移直线y=-x可得结论.

解答 解:作出约束条件$\left\{\begin{array}{l}x≥0\\ y≥3x\\ x+ay≤7\end{array}\right.$所对应的可行域(如图阴影三角形),
目标函数z=x+y可化为y=-x+z,平移直线y=-x可知,
当直线经过点A($\frac{7}{1+3a}$,$\frac{21}{1+3a}$)或B(7,0)时,截距z取最大值,
∴$\frac{7}{1+3a}$+$\frac{21}{1+3a}$=14,解得a=$\frac{1}{3}$,
当直线过B(7,0)时,z的值为7,不合题意.
故选:D.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知f(x)=2|x|+x2+a-1有唯一的零点,则实数a的值为(  )
A.-3B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$U=\{x|\frac{x-2}{x}≤1\}$,A={x|2-x≤1},则∁UA=(  )
A.{x|x<1}B.{x|0<x<1}C.{x|0≤x<1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点A(4$\sqrt{3}$,1),将OA绕坐标原点O逆时针旋转$\frac{π}{6}$至OB,设C(1,0),∠COB=α,则tanα=(  )
A.$\frac{{\sqrt{3}}}{12}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{10\sqrt{3}}}{11}$D.$\frac{{5\sqrt{3}}}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知an>0,Sn为数列{an}的前n项和,且满足$a_n^2+2{a_n}$=4Sn+3
(1)求{an}的通项公式;  
(2)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$求bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.P为椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上任意一点,F1,F2为左、右焦点,如图所示.
(1)若PF1的中点为M,求证:MO=5-$\frac{1}{2}$|PF1|;
(2)若∠F1PF2=60°,求|PF1|•|PF2|的值以及△PF1F2的面积;
(3)椭圆上是否存在点P,使$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,若存在,求出P点的坐标,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合$\left\{{x∈N|\frac{6}{x}∈N}\right\}$的真子集有(  )个.
A.8B.16C.15D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知:在△ABC中,$sinA+cosA=\frac{1}{5}$.
求:(1)sinA•cosA
(2)tanA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知空间直角坐标系中两点A(1,-2,3),B(-1,3,1),则|AB|=$\sqrt{33}$.

查看答案和解析>>

同步练习册答案