精英家教网 > 高中数学 > 题目详情
设经过双曲线x2-
y2
3
=1
的左焦点F1作倾斜角为
π
6
的直线与双曲线左右两支分别交于点A,B.求
(I)线段AB的长;
(II)设F2为右焦点,求△F2AB的周长.
(I)F1(-2,0)
k=tan
π
6
=
3
3

设A(x1,y1)B(x2,y2
将直线AB:y=
3
3
(x+2)
代入3x2-y2-3=0
整理得8x2-4x-13=0
由距离公式|AB|=
1+k2
8
=3(6分)
(II)|F2A|=2x1-1,|F2B|=1-2x2
|F2A|+|F2B|=2(x1-x2)=2•
(x1+x2)2-4x1x2
=2•
3
2
3
=3
3

F2AB的周长L=3+3
3
(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

双曲线
x2
9
-
y2
16
=1
的两个焦点F1、F2,点P在双曲线上,若PF1⊥PF2,则△PF1F2面积是(  )
A.16B.32C.25D.50

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以抛物线y2=12x的焦点为圆心,且与双曲线
x2
16
-
y2
9
=1
的两条渐近线相切的圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为
3
,则p=(  )
A.1B.
3
2
C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线x2-y2=1的渐近线方程是(  )
A.x=±1B.y=±
2
x
C.y=±xD.y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点,对称轴为坐标轴,离心率e=
3
,一条准线的方程为3x-
6
=0
,求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的右焦点,直线l过点F且与双曲线
x2
a2
-
y2
b2
=1
的两条渐近线l1,l2分别交于点M,N,与椭圆交于点A,B.
(Ⅰ)若∠MON=
π
3
,双曲线的焦距为4.求椭圆方程.
(Ⅱ)若
OM
MN
=0
(O为坐标原点),
FA
=
1
3
AN
,求椭圆的离心率e.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点在双曲线
x2
9
-
y2
16
=1
上,且点M到左焦点的距离为7,则它到右焦点的距离为(  )
A.13B.1C.13或1D.非以上答案

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线的准线与圆相切,则的值为
A.B.1C.2D.4

查看答案和解析>>

同步练习册答案