精英家教网 > 高中数学 > 题目详情
(本题15分)如图,在四棱锥中,底面 , ,的中点。

(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.
(1)四棱锥中,因底面,故,结合平面,进而证明
(2)根据底面在底面内的射影是,从而证明。
(3)

试题分析:解法一:
(Ⅰ)证明:在四棱锥中,因底面平面

平面
平面.…………………4分
(Ⅱ)证明:由,可得
的中点,
由(Ⅰ)知,,且,所以平面
平面
底面在底面内的射影是
,综上得平面. …………………9分

(Ⅲ)过点,垂足为,连结.则(Ⅱ)知,平面在平面内的射影是,则
因此是二面角的平面角.
由已知,得.设
可得

中,

中,
所以二面角的正切值为.  ………………15分
解法二:
(Ⅰ)证明:以AB、AD、AP为x、y,z轴建立空间直角坐标系,设AB=a.




 
…………………5分
(Ⅱ)证明:
 

…………………9分
(Ⅲ)设平面PDC的法向量为

又平面APD的法向量是
,所以二面角的正切值是 …………………15分
点评:解决该试题的关键是利用空间中的点线面的位置关系,来结合定理加以证明,同时结合向量法求解二面角,需要运算细心点,中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知为两条不同的直线,为两个不同的平面,则下列推理中正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体中,,点的中点,点上,若平面,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正三棱柱中,E为AC中点

(1)求证: 
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD为直角梯形,AD∥BC,BAD=90°,PA底面ABCD,且PA=AD=AB=2BC=2,M、N分别为PC、PB的中点.

(Ⅰ)求证:PB平面ADMN;
(Ⅱ)求四棱锥P-ADMN的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且中点.

(1)证明://平面
(2)证明:平面平面
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD
的中点.

(1)求证:MC∥平面PAD
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中正确的是(  )
A.平行于平面内两条直线的平面,一定平行于这个平面
B.一条直线平行于一个平面内的无数条直线,则这条直线与该平面平行
C.两个平面分别与第三个平面相交,若交线平行则两平面平行
D.在两个平行平面中,一平面内的一条直线必平行于另一个平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)在直三棱柱(侧棱垂直底面)中,,且异面直线所成的角等于

(Ⅰ)求棱柱的高;
(Ⅱ)求与平面所成的角的大小.

查看答案和解析>>

同步练习册答案