【题目】在平面直角坐标系中,圆,以坐标原点为极点,轴正半轴为极轴,直线的极坐标方程为,直线交圆于两点,为中点.
(1)求点轨迹的极坐标方程;
(2)若,求的值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,C、D两点的坐标为,曲线上的动点P满足.又曲线上的点A、B满足.
(1)求曲线的方程;
(2)若点A在第一象限,且,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为2的正方体中,点是对角线上的点(点与、不重合),则下列结论正确的个数为( )
①存在点,使得平面平面;
②存在点,使得平面;
③若的面积为,则;
④若、分别是在平面与平面的正投影的面积,则存在点,使得.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点列为函数图像上的点,点列顺次为轴上的点,其中,对任意,点构成以为顶点的等腰三角形.
(1)证明:数列是等比数列;
(2)若数列中任意连续三项能构成三角形的三边,求的取值范围;
(3)求证:对任意,是常数,并求数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.
(1)证明:平面.
(2)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个半圆中有两个互切的内切半圆,由三个半圆弧围成曲边三角形,作两个内切半圆的公切线把曲边三角形分隔成两块,阿基米德发现被分隔的这两块的内切圆是同样大小的,由于其形状很像皮匠用来切割皮料的刀子,他称此为“皮匠刀定理”,如图,若,则阴影部分与最大半圆的面积比为( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:双曲线:的左、右焦点分别为,,过作直线交轴于点.
(1)当直线平行于的一条渐近线时,求点到直线的距离;
(2)当直线的斜率为时,在的右支上是否存在点,满足?若存在,求出点的坐标;若不存在,说明理由;
(3)若直线与交于不同两点、,且上存在一点,满足(其中为坐标原点),求直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com