精英家教网 > 高中数学 > 题目详情

【题目】为了了解游客的情况,以便制定相应的策略,在某月中随机抽取甲、乙两个景点各10天的游客数,画出茎叶图如图:

1)若景点甲中的数据的中位数是125,景点乙中的数据的平均数是124,求xy的值;

2)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据.今从这段时期中任取4天,记其中游客数超过120人的天数为,求概率

3)现从如图所示的共20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于115且不高于125人的天数为,求的分布列和期望.

【答案】1;(2;(3)分布列见解析,.

【解析】

110位数中位数为第5位和第6位数之和除以2,找出数值计算即可;

2)由题意判断该分布符合二项分布,结合二项分布公式求解即可;

3)由题分别求出景点甲中被选出的概率为,在景点乙中被选出的概率为,判断知的所有可能的取值为012,由相互独立事件的乘法公式计算求出对应概率,列出分布列,即可求出期望

1)景点甲中的数据的中位数是125,可得,景点乙中的数据的平均数是124,可得,解得

2)由题意知:因为景点甲的每一天的游客数超过120人的概率为

任取4天,即是进行了4次独立重复试验,其中有次发生,

故随机变量服从二项分布,则

3)从图中看出:景点甲的数据中符合条件的只有1天,景点乙的数据中符合条件的有4天,所以在景点甲中被选出的概率为,在景点乙中被选出的概率为.

由题意知:的所有可能的取值为012.

所以得分布列为:

0

1

2

P

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于正整数,如果个整数满足

,则称数组的一个正整数分拆”.均为偶数的正整数分拆的个数为均为奇数的正整数分拆的个数为.

()写出整数4的所有正整数分拆”;

()对于给定的整数,设的一个正整数分拆,且,求的最大值;

()对所有的正整数,证明:;并求出使得等号成立的的值.

(:对于的两个正整数分拆,当且仅当时,称这两个正整数分拆是相同的.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年国际篮联篮球世界杯将于2019831日至915日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.为了宣传国际篮联篮球世界杯,某大学从全校学生中随机抽取了120名学生,对是否会收看该国际篮联篮球世界杯赛事的情况进行了问卷调查,统计数据如下:

会收看

不会收看

男生

60

20

女生

20

20

1)根据上表说明,能否有99%的把握认为是否会收看该国际篮联篮球世界杯赛事与性别有关?

2)甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球3次均未命中的概率为.

i)求乙投球的命中率

ii)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

附:,其中

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了100名高中生,根据问卷调查,得到以下数据:

作文成绩优秀

作文成绩一般

总计

课外阅读量较大

35

20

55

课外阅读量一般

15

30

45

总计

50

50

100

1)根据列联表,能否有99.5%的把握认为课外阅读量的大小与作文成绩优秀有关;

2)若用分层抽样的方式从课外阅读量一般的高中生中选取了6名高中生,再从这6名高中生中随机选取2名进行面谈,求面谈的高中生中至少有1名作文成绩优秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当为何值时,轴为曲线的切线;

2)用表示中的最大值,设函数,当时,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节(每年农历五月初五),是中国传统节日,有吃粽子的习俗.某超市在端午节这一天,每售出kg粽子获利润元,未售出的粽子每kg亏损.根据历史资料,得到销售情况与市场需求量的频率分布表,如下表所示.该超市为今年的端午节预购进了kg粽子.(单位:kg)表示今年的市场需求量,(单位:元)表示今年的利润.

市场需求量(kg

频率

0.1

0.2

0.3

0.25

0.15

1)将表示为的函数;

2)在频率分布表的市场需求量分组中,以各组的区间中间值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面为菱形的四棱柱中,平面.

1)证明:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,讨论函数的单调性;

(Ⅱ)若方程没有实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)当 恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案