精英家教网 > 高中数学 > 题目详情
直三棱柱ABC-A1B1 C1的六个顶点都在球O的球面上.若AB=BC=1,∠ABC=120°,AA1=2
3
,则球O的表面积为(  )
分析:通过已知体积求出底面外接圆的半径,设此圆圆心为O',球心为O,在RT△OBO'中,求出球的半径,然后求出球的表面积即可.
解答:解:在△ABC中AB=BC=1,∠ABC=120°,
由余弦定理可得AC=
3

由正弦定理,可得△ABC外接圆半径r=1,
设此圆圆心为O',球心为O,在RT△OAO'中,
得球半径R=
12+(
3
)
2
=2,
故此球的表面积为4πR2=16π
故选B.
点评:本题是基础题,解题思路是:先求底面外接圆的半径,转化为直角三角形,求出球的半径,这是三棱柱外接球的常用方法;本题考查空间想象能力,计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB1=
3

(1)求证:平面AB1C⊥平面B1CB;    
(2)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1;   
(2)求C1到平面B1AC的距离;   
(3)求三棱锥A1-AB1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆八中高三(下)第二次月考数学试卷(理科)(解析版) 题型:选择题

如图,在直三棱柱ABC-A1 B1 C1中,AA1=1,AC⊥BC,AC=BC=2,则BC1与平面AB B1 A1所成角的正弦值是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案