精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xOy中,已知曲线M上的任意一点到原点O的距离与到A(3,-6)的距离之比为$\frac{1}{2}$,点P(1,-2).
(1)求曲线M的方程;
(2)过点P作两条相异直线分别与曲线M相交于B,C,且直线PB和直线PC的倾斜角互补,求证:直线BC的斜率为定值.

分析 (1)利用直接法,建立方程,即可求曲线C的方程.
(2)直线与圆的方程联立,求出A,B的坐标,利用斜率公式,即可证明直线BC的斜率为定值.

解答 解:(1)设曲线M上任意一点为Q(x,y),由题意得$\frac{{|{OQ}|}}{{|{AQ}|}}=\frac{{\sqrt{{x^2}+{y^2}}}}{{\sqrt{{{({x-3})}^2}+{{({y+6})}^2}}}}=\frac{1}{2}⇒{({x+1})^2}+{({y-2})^2}=20$,此即为曲线M的方程.
(2)由题意知,直线PB和直线PC的斜率存在,且互为相反数,故可设直线PB的方程为:y+2=k(x-1),
由$\left\{\begin{array}{l}y+2=k({x-1})\\{({x+1})^2}+{({y+2})^2}=20\end{array}\right.⇒({1+{k^2}}){x^2}+2({1-{k^2}-4k})x+{k^2}+8k-3=0$,
因为点P的横坐标x=1一定是该方程的解,故可得${x_B}=\frac{{{k^2}+8k-3}}{{1+{k^2}}}$,同理${x_C}=\frac{{{k^2}-8k-3}}{{1+{k^2}}}$(以-k为k),
所以${k_{BC}}=\frac{{{y_C}-{y_B}}}{{{x_C}-{x_B}}}=\frac{{-k({{x_C}-1})-k({{x_B}-1})}}{{{x_C}-{x_B}}}=\frac{{2k-k({{x_C}+{x_B}})}}{{{x_C}-{x_B}}}=-\frac{1}{2}$.
故直线BC的斜率为定值$-\frac{1}{2}$.

点评 本题考查轨迹方程,考查直线的斜率为定值的证明,考查学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:填空题

下列四个命题:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设,若,则”是一个假命题;③“”是“”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真.其中不正确的命题是 .(写出所有不正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M、N分别为线段PB,PC 上的点,MN⊥PB.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)求证:当点M不与点P,B重合时,M,N,D,A四个点在同一个平面内;
(Ⅲ)当PA=AB=2,二面角C-AN-D的大小为$\frac{π}{3}$时,求PN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,BE平分∠ABC,AD与BE交于点P,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则λ等于(  )
A.$\frac{1}{2}$B.$\sqrt{2}$-1C.$\frac{\sqrt{2}-1}{2}$D.$\frac{2-\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{\begin{array}{l}x≥1\\ x-2y+9≥0\\ x-y≤0\end{array}\right.$,则z=4x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,点Q($\frac{a^2}{{\sqrt{{a^2}-{b^2}}}}$,0)在直线l:x=2上.
(1)求椭圆C的标准方程;
(2)若O为坐标原点,P为直线l上一动点,过点P作直线l′与椭圆相切于点A,求△POA面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的首项a1=1,且满足对任意的a1=1,都有an+1-an≤2n,an+2-an≥3×2n成立,则a2015=22015-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知-$\frac{π}{2}$<θ<$\frac{π}{2}$,且sinθ+cosθ=$\frac{1}{5}$,则tanθ的值为-$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.化简:$\frac{sin(π-α)}{tan(π+α)}•\frac{tan(2π-α)}{cos(π-α)}•\frac{cos(2π-α)}{sin(π+α)}$=-1.

查看答案和解析>>

同步练习册答案