精英家教网 > 高中数学 > 题目详情
7.已知正项数列{an}中,a1=1,a2=2,2an2=an-12+an+22(n≥2),bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$记数列{bn}的前n项和为Sn,则S33的值是(  )
A.$\sqrt{99}$B.$\sqrt{33}$C.4$\sqrt{2}$D.3

分析 由2an2=an-12+an+12(n≥2),可得数列{an2}为等差数列,进而得到bn=$\frac{1}{3}$($\sqrt{3n+1}$-$\sqrt{3n-2}$),再利用“裂项求和”方法即可得出.

解答 解:∵2an2=an-12+an+12(n≥2),
∴数列{an2}为等差数列,首项为1,公差为22-1=3.
∴an2=1+3(n-1)=3n-2.an>0.
∴an=$\sqrt{3n-2}$,
∴bn=$\frac{1}{{a}_{n}+{a}_{n+1}}$=$\frac{1}{\sqrt{3n-2}+\sqrt{3n+1}}$=$\frac{1}{3}$($\sqrt{3n+1}$-$\sqrt{3n-2}$),
∴数列{bn}的前n项和为Sn=$\frac{1}{3}$[($\sqrt{4}$-1)+($\sqrt{7}$-$\sqrt{4}$)+…+($\sqrt{3n+1}$-$\sqrt{3n-2}$)]
=$\frac{1}{3}$($\sqrt{3n+1}$-1).
则S33=$\frac{1}{3}$(10-1)=3.
故选:D

点评 本题考查了等差数列的定义通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1与椭圆$\frac{x^2}{m^2}+\frac{y^2}{b^2}$=1(m>b>0)的离心率之积等于1,则以a,b,m为边长的三角形一定是(  )
A.等腰三角形B.钝角三角形C.锐角三角形D.直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=x2+1,求:
(1)在点(1,2)处的切线方程;
(2)过点(1,1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设命题p:实数a满足不等式3a≤9,命题q:x2+3(3-a)x+9≥0的解集为R.已知“p∧q”为真命题,并记为条件r,且条件t:实数a满足a<m或$a>m+\frac{1}{2}$.
(1)求条件r的等价条件(用a的取值范围表示);
(2)若r是¬t的必要不充分条件,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$f(x)={cos^2}x-\frac{{\sqrt{3}}}{2}sin2x-\frac{1}{2}$,
(1)求出f(x)图象的对称中心的坐标;
(2)△ABC三个内角A、B、C所对边为a、b、c,若f(A)+1=0,b+c=2.求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=x2cosx的导数为(  )
A.y′=x2cosx-2xsin xB.y′=2xcos x+x2sin x
C.y′=2xcosx-x2sinxD.y′=xcosx-x2sin x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{3x}{x+3}$,数列{xn}的通项由xn=f(xn-1)(n≥2且x∈N*)确定.
(1)求证:数列($\frac{1}{{x}_{n}}$)是等差数列;
(2)当x1=$\frac{1}{2}$时,求x2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列关于幂函数y=xα(α∈Q)的论述中,正确的是(  )
A.当α=0时,幂函数的图象是一条直线
B.幂函数的图象都经过(0,0)和(1,1)两个点
C.若函数f(x)为奇函数,则f(x)在定义域内是增函数
D.幂函数f(x)的图象不可能在第四象限内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知角α的终边经过点(m,9),且$tanα=\frac{3}{4}$,则sinα的值为(  )
A.$\frac{4}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

同步练习册答案