精英家教网 > 高中数学 > 题目详情

在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.

(1)详见解析;(2).

解析试题分析:(1)连接,利用平行线的传递性结合得到,再利用点的中点得到,从而证明四边形为平行四边形,从而得到,最终结合直线与平面的判定定理证明平面;(2)建立以点为坐标原点,以所在直线为轴、轴、轴的空间直角坐标系,利用空间向量法来求二面角的余弦值.
试题解析:(1)

由于,因此连接,由于

在平行四边形中,是线段的中点,则,且
因此,,所以四边形为平行四边形,
平面平面平面
(2)
平面两两垂直。
分别以所在直线为轴、轴、轴建立如图所示的空间直角坐标系


,又.
设平面的法向量

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,平面为棱上的动点,.
⑴当的中点,求直线与平面所成角的正弦值;
⑵当的值为多少时,二面角的大小是45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,已知

(1)求异面直线夹角的余弦值;
(2)求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是直角梯形,∠=90°,=1,=2,又=1,∠=120°,,直线与直线所成的角为60°.
(1)求二面角的的余弦值;
(2)求点到面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体中,在棱上.

(1)求异面直线所成的角;
(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,几何体中,为边长为的正方形,为直角梯形,

(1)求异面直线所成角的大小;
(2)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面的中点,作于点

(1)证明平面
(2)证明平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿直线BD将△BCD翻折成△BCD,使得平面BCD平面ABD.

(1)求证:C'D平面ABD;
(2)求直线BD与平面BEC'所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥S-ABCD中,ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E为CD上一点,且CE=3DE.

(1)求证:AE⊥平面SBD.
(2)M,N分别为线段SB,CD上的点,是否存在M,N,使MN⊥CD且MN⊥SB,若存在,确定M,N的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案