【题目】如图,在圆心角为直角的扇形OAB区域中,M、N分别为OA、OB的中点,在M、N两点处各有一个通信基站,其信号的覆盖范围分别为以OA、OB为直径的圆,在扇形OAB内随机取一点,则此点无信号的概率是
A. B. C. D.
【答案】B
【解析】
试题OA的中点是M,则∠CMO=90°,这样就可以求出弧OC与弦OC围成的弓形的面积,从而可求出两个圆的弧OC围成的阴影部分的面积,用扇形OAB的面积减去三角形的面积,减去加上两个弧OC围成的面积就是无信号部分的面积,最后根据几何概型的概率公式解之即可.
解:OA的中点是M,则∠CMO=90°,半径为OA=r
S扇形OAB=πr2,S半圆OAC=π()2=πr2,
S△OmC=××=r2,
S弧OC=S半圆OAC﹣S△ODC=πr2﹣r2,
两个圆的弧OC围成的阴影部分的面积为πr2﹣r2,
图中无信号部分的面积为πr2﹣r2﹣(πr2﹣r2)=πr2﹣r2,
∴无信号部分的概率是:.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知函数为定义域R上的奇函数,且在R上是单调递增函数,函数,数列为等差数列,且公差不为0,若,则( )
A. 45B. 15C. 10D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, , , , 平面.
(1)求证: 平面;
(2)若为线段的中点,且过三点的平面与线段交于点,确定点的位置,说明理由;并求三棱锥的高.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2,一条准线方程为x=2.P为椭圆C上一点,直线PF1交椭圆C于另一点Q.
(1)求椭圆C的方程;
(2)若点P的坐标为(0,b),求过点P,Q,F2三点的圆的方程;
(3)若=,且λ∈[],求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率,过焦点且垂直于x轴的直线被椭圆截得的线段长为3.
(1)求椭圆的方程;
(2)动直线与椭圆交于A,B两点,在平面上是否存在定点P,使得当直线PA与直线PB的斜率均存在时,斜率之和是与无关的常数?若存在,求出所有满足条件的定点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南某地区年10年间梅雨季节的降雨量单位:的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
假设每年的梅雨季节天气相互独立,求该地区未来三年里至少有两年梅雨季节的降雨量超过350mm的概率.
老李在该地区承包了20亩土地种植杨梅,他过去种植的甲品种杨梅,平均每年的总利润为28万元而乙品种杨梅的亩产量亩与降雨量之间的关系如下面统计表所示,又知乙品种杨梅的单位利润为元,请你帮助老李分析,他来年应该种植哪个品种的杨梅可以使总利润万元的期望更大?并说明理由.
降雨量 | ||||
亩产量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知半圆:,、分别为半圆与轴的左、右交点,直线过点且与轴垂直,点在直线上,纵坐标为,若在半圆上存在点使,则的取值范围是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某鲜花小镇圈定一块半径为1百米的圆形荒地,准备建成各种不同鲜花景观带.为了便于游客观赏,准备修建三条道路AB,BC,CA,其中A,B,C分别为圆上的三个进出口,且A,B分别在圆心O的正东方向与正北方向上,C在圆心O南偏西某一方向上.在道路AC与BC之间修建一条直线型水渠MN种植水生观赏植物黄鸢尾(其中点M,N分别在BC和CA上,且M在圆心O的正西方向上,N在圆心O的正南方向上),并在区域MNC内种植柳叶马鞭草.
(1)求水渠MN长度的最小值;
(2)求种植柳叶马鞭草区域MNC面积的最大值(水渠宽度忽略不计).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com