【题目】如图,平面平面,且,.
(1)求证:;
(2)求直线与平面所成角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)过点作,利用边角边可得≌,即可证明;(2)方法一,过点B作出平面ADC的垂线,即可找到线面角,利用等体积转化法可求出点B到平面ADC的距离,即可求出线面角的余弦值;方法二,建立空间直角坐标系,求出平面ADC的法向量,利用空间向量的方法即可求解.
(1)过点作,垂足为,连接,
因,,所以,
故≌,所以,即,
又 ,所以平面,又平面,故.
(2)方法一:不妨设,则,,所以,过点作平面,连接,
则即为直线与平面所成的角,
由等体积可得,
即,∴.
方法二 :由(1)可得 ,所以以为原点,分别为轴建立空间直角坐标系如图.
不妨设,则,,,,
设平面的法向量为,
,,
即有,
设直线与平面所成的角为,故,
∴.
科目:高中数学 来源: 题型:
【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为6组,得到如图所示的频率分布直方图.
(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在内的人数为X,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数为“同比不减函数”.
(1)求证:对任意正常数,都不是“同比不减函数”;
(2)若函数是“同比不减函数”,求的取值范围;
(3)是否存在正常数,使得函数为“同比不减函数”,若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是由两个全等的菱形和组成的空间图形,,∠BAF=∠ECD=60°.
(1)求证:;
(2)如果二面角B-EF-D的平面角为60°,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】本市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼.摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:
(1)根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);
(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中评出20个最佳作品,并邀请作者参加“讲述照片背后的故事”座谈会.
①在答题卡上的统计表中填出每组应抽取的人数;
年龄 | ||||||
人数 |
②若从较年轻的前三组作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于______。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com