精英家教网 > 高中数学 > 题目详情

【题目】如图,平面平面,且

1)求证:

2)求直线与平面所成角的余弦值.

【答案】(1)见解析;(2

【解析】

1)过点,利用边角边可得,即可证明;(2)方法一,过点B作出平面ADC的垂线,即可找到线面角,利用等体积转化法可求出点B到平面ADC的距离,即可求出线面角的余弦值;方法二,建立空间直角坐标系,求出平面ADC的法向量,利用空间向量的方法即可求解.

1)过点,垂足为,连接

,所以,

,所以,即

,所以平面,又平面,故

2)方法一:不妨设,则,所以,过点平面,连接

即为直线与平面所成的角,

由等体积可得

,∴

方法二 :由(1)可得 ,所以以为原点,分别为轴建立空间直角坐标系如图.

不妨设,则,

设平面的法向量为

即有

设直线与平面所成的角为,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为6组,得到如图所示的频率分布直方图.

1)求a的值;

2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;

3)在抽取的100名理科生中,采用分层抽样的方法从成绩在内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在内的人数为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在正常数,使得对任意的,都有成立,我们称函数同比不减函数

1)求证:对任意正常数都不是同比不减函数

2)若函数同比不减函数,求的取值范围;

3)是否存在正常数,使得函数同比不减函数,若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥D-ABC中,EF分别为DBAB的中点,且.

1)求证:平面平面ABC

2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.

(I)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;

(II)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是由两个全等的菱形组成的空间图形,,∠BAF=∠ECD60°.

1)求证:

2)如果二面角BEFD的平面角为60°,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼.摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如图:

(1)根据频率分布直方图,求这100位摄影者年龄的样本平均数和中位数(同一组数据用该区间的中点值作代表);

(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中评出20个最佳作品,并邀请作者参加“讲述照片背后的故事”座谈会.

①在答题卡上的统计表中填出每组应抽取的人数;

年龄

人数

②若从较年轻的前三组作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知平面,四边形为正方形,,若鳖臑的外接球的体积为,则阳马的外接球的表面积等于______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线abc,若ab共面,bc共面,则ac共面;④若直线l上有一点在平面α外,则l在平面α.其中错误命题的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案