精英家教网 > 高中数学 > 题目详情
已知O为坐标原点,
OA
=(2sin2x,1),
OB
=(1,-2
3
sinxcosx+1)
f(x)=-
1
2
OA
OB
+1

(1)求y=f(x)的最小正周期;
(2)将f(x)图象上各点的纵坐标不变,横坐标扩大为原来的两倍,再将所得图象向左平移
π
6
个单位后,所得图象对应的函数为g(x),且α∈[
π
6
,  
3
],  β∈(-
6
,-
π
3
)
g(α)=
3
5
,  g(β)=-
4
5
,求cos2(α-β)-1的值.
分析:(1)由题设,由数量积坐标表示公式得到函数y=f(x)的解析式,再由周期公式求解即可;
(2)根据图象变换规则先求出g(x),再利用三角恒等变换公式结合角的变换,即可求cos2(α-β)-1的值.
解答:解:(1)由题设有,f(x)=-sin2x+
3
sinxcosx+
1
2
=
cos2x+
3
sin2x
2
+
1
2
=sin(2x+
π
6
)

∴函数y=f(x)的最小正周期为
2

(2)由题设有g(x)=sin(x+
π
3
)
,又g(α)=
3
5
,  g(β)=-
4
5

sin(α+
π
3
)=
3
5
,  sin(β+
π
3
)=-
4
5

因为α∈[
π
6
,  
3
],  β∈(-
6
,-
π
3
)
,所以α+
π
3
∈[
π
2
,  π],   β+
π
3
∈(-
π
2
,  0)

cos(α+
π
3
)=-
4
5
,  cos(β+
π
3
)=
3
5

sin(α-β)=sin[(α+
π
3
)-(β+
π
3
)]
=sin(α+
π
3
)cos(β+
π
3
)-cos(α+
π
3
)sin(β+
π
3
)
=
3
5
3
5
-(-
4
5
)•(-
4
5
)=-
7
25

所以cos2(α-β)-1=-2sin2(α-β)=-2×(-
7
25
)2=-
98
625
点评:本题考查向量的数量积公式,三角恒等变换公式,角的变换技巧,属于能力型,探究型题,综合性强,解题的关键是熟练掌握公式及能观察出角之间的关系
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O为坐标原点,
OA
=(-4,0),
AB
=(8,0)
,动点P满足|
PA
|+|
PB
|=10

(1)求动点P的轨迹方程;
(2)求
PA
PB
的最小值;
(3)若Q(1,0),试问动点P的轨迹上是否存在M、N两点,满足
NQ
=
4
3
QM
?若存在求出M、N的坐标,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若
OA
AF
=-4,则点A的坐标是
(1,2)或(1,-2)
(1,2)或(1,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F,以OF为直径作圆交双曲线的渐近线于异于原点O的两点A、B,若(
AO
+
AF
)•
OF
=0,则双曲线的离心率e为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•沈阳二模)已知O为坐标原点,点M的坐标为(a,1)(a>0),点N(x,y)的坐标x、y满足不等式组
x+2y-3≤0
x+3y-3≥0
y≤1
.若当且仅当
x=3
y=0
时,
OM
ON
取得最大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,对于函数f(x)=asinx+bcosx,称向量
OM
=(a,b)
为函数f(x)的伴随向量,同时称函数f(x)为向量
OM
的伴随函数.记
ON
=(1,
3
)
的伴随函数为h(x),则使得关于x的方程h(x)-t=0在[0,
π
2
]
内恒有两个不相等实数解的实数t的取值范围是
[
3
,2)
[
3
,2)

查看答案和解析>>

同步练习册答案