精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且满足,设.

(Ⅰ)求证:数列是等比数列;

(Ⅱ)若,求实数的最小值;

(Ⅲ)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.

【答案】I)详见解析;(II;(III为指数型和.

【解析】

I)通过计算证明证得,来证得数列是等比数列.

II)利用求得数列的通项公式,由,求得的最小值.

III)先求得的通项公式,对分成偶数和奇数两种情况进行分类讨论,根据“指数型和”的定义,求出符合题意的“指数型和”.

I.由于,当时,,所以数列是等比数列..

II)由(I)得,所以.因为.时,

,而,所以,即,化简得,由于当时,单调递减,最大值为,所以

,又,所以的最小值为.

III)由(I)当时,,当时,.也符合上式,所以对正整数都有.,(),只能是不小于的奇数.

①当为偶数时,,由于都是大于的正整数,所以存在正整数,使得,所以,且,相应的,即有为“指数型和”;

为奇数时,,由于个奇数之和,仍为奇数,又为正偶数,所以不成立,此时没“指数型和”.

综上所述,中的项存在“指数型和”,为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是菱形所在平面外一点,

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,

(1)把全程运输成本()表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;

(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对相关系数r来说,下列说法正确的是(  ).

A.越接近0,相关程度越大;越接近1,相关程度越小

B.越接近1,相关程度越大;越大,相关程度越小

C.越接近1,相关程度越大;越接近0,相关程度越小

D.越接近1,相关程度越小;越大,相关程度越大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形为矩形,平面,连接,则下列各组向量中,数量积不为零的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知分别为的外心,重心,.

1)求点的轨迹的方程;

2)是否存在过的直线交曲线两点且满足,若存在求出的方程,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棋盘上标有第站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.

1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;

2)证明:

3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年高考刚过,为了解考生对全国2卷数学试卷难度的评价,随机抽取了某学校50名男考生与50名女考生,得到下面的列联表:

非常困难

一般

男考生

20

30

女考生

40

10

(1)分别估计该学校男考生、女考生觉得全国2卷数学试卷非常困难的概率;

(2)从该学校随机抽取3名男考生,2名女考生,求恰有4名考生觉得全国2卷数学试卷非常困难的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修44:坐标系与参数方程]:在直角坐标系中,直线的参数方程为t为参数,),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为,已知直线与曲线C交于不同的两点AB

(1)求直线的普通方程和曲线C的直角坐标方程;

(2)P(12),求的取值范围.

查看答案和解析>>

同步练习册答案