精英家教网 > 高中数学 > 题目详情
如果变量x,y满足条件
x-2y+4≤0
x+2y-8≤0
x≥0
且z=3x+y,那么z的取值范围是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:先做出不等式组表示的平面区域,求出各个角点的坐标,分别代入目标函数,比较后,求出目标函数的最优解,进而可得目标函数的取值范围.
解答: 解:满足条件
x-2y+4≤0
x+2y-8≤0
x≥0
的可行域如下图所示:

∵z=3x+y,
∴zA=2,zB=9,zC=4,
故z=3x+y的最大值为9,最小值为2,
故z的取值范围是:[2,9],
故答案为:[2,9]
点评:本题给出二元一次不等式组,求目标函数z的最值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集为R,集合P={x|x=a2+4a+1,a∈R},Q={y|y=-b2+2b+3,b∈R},求P∩Q和P∪(∁RQ).

查看答案和解析>>

科目:高中数学 来源: 题型:

化简方程:
(x+4)2+y2
-5=
(x-4)2+y2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ) 若α,β∈[0,2π],用向量法证明cos(α-β)=cosαcosβ+sinαsinβ;
(Ⅱ) 若向量
a
=(sinθ,-2)与
b
=(1,cosθ)互相垂直,且sin(θ-φ)=
10
10
其中θ∈(0,
π
2
),φ∈(0,
π
2
)求cosφ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(1+ax2),a∈R且a≠0.
(1)当a=-4时,求F(x)=f(x)-2x的最大值;
(2)求f(x)的单调区间;
(3)当n∈N*,求证:
1
12+n2
+
2
22+n2
+
3
32+n2
+…+
n
n2+n2
1
2
ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b>c>0,则a2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
的最小值为(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次射箭比赛中,某运动员5次射箭的环数依次是9,10,9,7,10,则该组数据的方差是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC所在的平面上有一点P,满足
BC
=
PA
+
PB
+
PC
.若△ABC的面积为12cm2,则△PBC的面积为
 
cm2

查看答案和解析>>

同步练习册答案