精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的实义域为R,其图象关于点(﹣1,0)中心对称,其导函数为f′(x),当x<﹣1时,(x+1)[f(x)+(x+1)f′(x)]<0.则不等式xf(x﹣1)>f(0)的解集为( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)

【答案】C
【解析】解:由题意设g(x)=(x+1)f(x),
则g′(x)=f(x)+(x+1)f′(x),
∵当x<﹣1时,(x+1)[f(x)+(x+1)f′(x)]<0,
∴当x<﹣1时,f(x)+(x+1)f′(x)>0,
则g(x)在(﹣∞,﹣1)上递增,
∵函数f(x)的定义域为R,其图象关于点(﹣1,0)中心对称,
∴函数f(x﹣1)的图象关于点(0,0)中心对称,
则函数f(x﹣1)是奇函数,
令h(x)=g(x﹣1)=xf(x﹣1),
∴h(x)是R上的偶函数,且在(﹣∞,0)递增,
由偶函数的性质得:函数h(x)在(0,+∞)上递减,
∵h(1)=f(0),∴不等式xf(x﹣1)>f(0)化为:h(x)>h(1),
即|x|<1,解得﹣1<x<1,
∴不等式的解集是(﹣1,1),
故选C.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在棱长为a的正方体ABCD﹣A1B2C3D4中,点E,F分别在棱AD,BC上,且AE=BF= a.过EF的平面绕EF旋转,与DD1、CC1的延长线分别交于G,H点,与A1D1、B1C1分别交于E1 , F1点.当异面直线FF1与DD1所成的角的正切值为 时,|GF1|=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.
(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;
(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b的值;
(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的”更相减损术“.执行该程序框图,若输入a,b,i的值分别为6,8,0时,则输出的i=(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)经过点( ,1),且离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为﹣ ,若动点P满足 ,试探究,是否存在两个定点F1 , F2 , 使得|PF1|+|PF2|为定值?若存在,求F1 , F2的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1 , k2 , 满足k1k2=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点A,B,C,D在同一个球的球面上,AB=BC=1,∠ABC=120°,若四面体ABCD体积的最大值为 ,则这个球的表面积为(
A.
B.4π
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.若命题p:?x0∈R,x02﹣x0+1<0,则¬p:?x?R,x2﹣x+1≥0
B.已知相关变量(x,y)满足回归方程 =2﹣4x,若变量x增加一个单位,则y平均增加4个单位
C.命题“若圆C:(x﹣m+1)2+(y﹣m)2=1与两坐标轴都有公共点,则实数m∈[0,1]为真命题
D.已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4﹣a)=0.68

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,讨论f(x)的单调性;
(Ⅱ)当x≥1时,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案