精英家教网 > 高中数学 > 题目详情
设函数f(x)=x+
ax
(a∈R),函数g(x)的图象与函数f(x)的图象关于点A(1,2)对称.
(1)求函数g(x)的解析式;
(2)若关于x的方程g(x)=a有且仅有一个实数解,求a的值,并求出方程的解;
(3)若函数f(x)在区间[2,+∞)上是增函数,求a的取值范围.
分析:(1)欲求函数g(x)的解析式,先设P(x,y)为图象C2上任意一点,P关于点A对称的点为P'(x',y'),根据对称性求出P与P′坐标的关系,利用P'(x',y')在C1上,即可求得函数g(x)的解析式;
(2)由g(x)=a得x+2+
a
x-2
=a
,整理得x2-ax+(3a-4)=0接下来讨论此方程解的情况:若x=2是方程①的解,则a=0,此时方程①有两个实数解x=2和x=-2,原方程有且仅有一个实数解x=-2;若x=2不是方程①的解,则由△=a2-12a+16=0,解得a=6±2
5
即可;
(3)利用函数单调性的定义求解,先设x1、x2∈[2,+∞),且x1<x2,因为函数f(x)在区间[2,+∞)上是增函数,所以f(x2)-f(x1)>0据此即可求得a的取值范围.
解答:解:(1)设P(x,y)为图象C2上任意一点,P关于点A对称的点为P'(x',y'),
x+x′
2
=1
y+y′
2
=2
,于是x'=2-x,y'=4-y,(2分)
因为P'(x',y')在C1上,所以y′=x′+
a
x′
,即4-y=2-x+
a
2-x
y=x+2+
a
x-2

所以g(x)=x+2+
a
x-2
.(5分)
(2)由g(x)=a得x+2+
a
x-2
=a
,整理得x2-ax+(3a-4)=0①(7分)
若x=2是方程①的解,则a=0,此时方程①有两个实数解x=2和x=-2,原方程有且仅有一个实数解x=-2;(8分)
若x=2不是方程①的解,则由△=a2-12a+16=0,解得a=6±2
5
.(9分)
所以,当a=0时,方程的解为x=-2;(10分)
当a=6+2
5
时,方程的解为x=3+
5
;(11分)
当a=6-2
5
时,方程的解为x=3-
5
.(12分)
(3)设x1、x2∈[2,+∞),且x1<x2
因为函数f(x)在区间[2,+∞)上是增函数,所以f(x2)-f(x1)>0.(14分)f(x2)-f(x1)=x2+
a
x2
-x1-
a
x1
=x2-x1+
a(x1-x2)
x1x2
=(x2-x1)•
x1x2-a
x1x2
>0

因为x2-x1>0,x1x2>0,所以x1x2-a>0,即a<x1x2,(16分)
而x1x2>4,所以a≤4.(17分)
因此a的取值范围是(-∞,4].(18分)
点评:本小题主要考查函数解析式的求解及常用方法、函数单调性的性质、函数与方程的综合运用等基础知识,考查运算求解能力与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是实数,e为自然对数的底数)
(1)若f(x)在其定义域内为单调函数,求p的取值范围;
(2)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(3)若在[1,e]上至少存在一点x0,使得f(x0)>g(x0)成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+1)≥f(x),则称f(x)为M上的高调函数.现给出下列三个命题:
①函数f(x)=(
12
)x
为R上的l高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围[2,+∞);
其中正确的命题是
②③
②③
(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x3-4x+3.有下列命题:
f(-
3
4
) <f(
15
2
)

②当x∈[-1,0]时f(x)=x3+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:徐州模拟 题型:解答题

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为2
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案