精英家教网 > 高中数学 > 题目详情

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

【答案】(I);(II).

【解析】试题分析:(I)根据余弦定理,求得 ,则是等边三角形.,故

(II)由题意可得,又由 ,可得,再结合余弦定理可得,最后由正弦定理可得 ,即可得到的值

试题解析:

() , 因为,

由余弦定理得,

所以,

整理得,

解得.

所以.

所以是等边三角形.

所以

() 法1: 由于的外角, 所以.

因为的面积是, 所以.

所以.

,

,

所以.

, 由正弦定理得,

所以.

法2: 作, 垂足为,

因为边长为等边三角形,

所以.

因为的面积是, 所以.

所以. 所以.

在Rt△中, ,

所以, .

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】空气质量指数(Air Quality Index,简称)是定量描述空气质量状况的指数,空气质量按照大小分为六级,为优;为轻度污染;为中度污染;为重度污染;为严重污染.一环保人士记录去年某地某月10天的的茎叶图如右.

(1)利用该样本估计该地本月空气质量优良()的天数;(按这个月总共30天计算)

(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为,求的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥中,平面平面,且

1已知点在线段上,确定的位置,使得平面

2分别在线段上,若沿直线将四边形向上翻折,恰好重合,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位共有老、中、青职工430,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求曲线在点处的切线方程和函数的极值;

(Ⅱ)若对任意的 ,都有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆轴交于两点,过点的圆的切线为是圆上异于的一点,垂直于轴,垂足为的中点,延长分别交

1)若点,求以为直径的圆的方程,并判断是否在圆上;

2)当在圆上运动时,证明:直线恒与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数,有下列结论:

的最大值为

的最小正周期是

在区间上是减函数;

④直线是函数的一条对称轴方程.

其中正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲. 

(Ⅰ)根据题中数据建立一个的列联表;

(Ⅱ)在犯错误的概率不超过0.001的前提下,能否认为“性别与患色盲有关系”?

附:参考公式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调区间

2若关于的不等式上有解求实数的取值范围

查看答案和解析>>

同步练习册答案