精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,则下列结论不成立的是( )
A.f(0)>f(1)
B.f(0)>f(2)
C.f(1)>f(3)
D.f(1)>f(2)
【答案】分析:由定义域为R的函数f(x)在(2,+∞)为增函数,且函数y=f(x+2)为偶函数,我们不难判断函数f(x)在定义域为R的单调性,并可以画出其草图,根据草图对四个答案逐一分析,即可得到结论.
解答:解:∵函数f(x)在(2,+∞)为增函数
∴函数y=f(x+2)在(0,+∞)为增函数
又∵函数y=f(x+2)为偶函数,
∴函数y=f(x+2)在(-∞,0)为减函数
即函数y=f(x)在(-∞,2)为减函数
则函数y=f(x)的图象如下图示:
由图可知:f(0)>f(1),
f(0)>f(2),f(1)>f(2)均成立
只有f(1)与f(3)无法判断大小
故选C
点评:本题考查的知识是函数的单调性和函数的奇偶性,这两个函数综合应用时,要注意:奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案