精英家教网 > 高中数学 > 题目详情

已知点A(3,0)B(3,0),动点P满足|PA|2|PB|.

(1)若点P的轨迹为曲线C,求此曲线的方程;

(2)若点Q在直线l1xy30上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.

 

1(x5)2y21624

【解析】(1)设点P的坐标为(xy),且|PA|2|PB|

2

化简得曲线C(x5)2y216.

(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.

由直线l2是此圆的切线,连接CQ

|QM|

CQl1时,|CQ|取最小值,|CQ|,此时|QM|的最小值为4.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练选修4-2练习卷(解析版) 题型:解答题

求矩阵的特征值及对应的特征向量.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-7-1练习卷(解析版) 题型:选择题

5的展开式中各项系数的和为2则该展开式中常数项为 (  )

A.-40 B.-20 C20 D40

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-2练习卷(解析版) 题型:解答题

如图,抛物线Ey24x的焦点为F,准线lx轴的交点为A.C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点MN.

(1)若点C的纵坐标为2,求|MN|

(2)|AF|2|AM|·|AN|,求圆C的半径.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-2练习卷(解析版) 题型:选择题

设椭圆C1(a>b>0)的左、右焦点分别为F1F2PC上的点,PF2F1F2PF1F230°,则C的离心率为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-6-1练习卷(解析版) 题型:选择题

已知圆(xa)2(yb)2r2的圆心为抛物线y24x的焦点,且与直线3x4y20相切,则该圆的方程为(  )

A(x1)2y2 Bx2(y1)2

C(x1)2y21 Dx2(y1)21

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-3练习卷(解析版) 题型:填空题

在正四棱锥SABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SOOD,则直线BC与平面PAC所成的角是________

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-5-2练习卷(解析版) 题型:选择题

已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形.若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为 (  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学(理)二轮专题复习知能提升演练1-3-2练习卷(解析版) 题型:选择题

ABCABCABBC3sin BAC(  )

A. B. C. D.

 

查看答案和解析>>

同步练习册答案