精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系 中,直线 的参数方程为 为参数),以该直角坐标系的原点 为极点, 轴的非负半轴为极轴的极坐标系下,圆 的方程为
(1)求直线 的普通方程和圆 的圆心的极坐标;
(2)设直线 和圆 的交点为 ,求弦 的长.

【答案】
(1)解:由 的参数方程消去参数 得普通方程为

圆 的直角坐标方程 ,

所以圆心的直角坐标为 ,因此圆心的一个极坐标为 .

(答案不唯一,只要符合要求即可)


(2)解:由(1)知圆心 到直线 的距离 ,

所以 .


【解析】分析:本题主要考查了直线的参数方程,解决问题的关键是(1)消去参数即可将 的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(2)求出圆心到直线的距离,由勾股定理求弦长即可
【考点精析】关于本题考查的直线的参数方程,需要了解经过点,倾斜角为的直线的参数方程可表示为为参数)才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 等比数列{bn}的各项均为正数,满足:a1=b1=1,a5=b3 , 且S3=9.
(1)求数列{an}和{bn}的通项公式;
(2)求 + +…+ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1 每一点的,横坐标保持不变,纵坐标变为原来的2倍,得到曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y-2=0 与C的交点为P1,P2 ,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,求线段 P1P2 的中点且与 l 垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为棱的中点.

(1)证明:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x+1)= ,则f(2x﹣1)的定义域为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为自然对数的底数, …).

(1)若函数仅有一个极值点,求的取值范围;

(2)证明:当时,函数有两个零点 ,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),直线l与y轴的交点为P.
(1)写出点P的极坐标(ρ,θ)(其中ρ>0,0≤θ<2π);
(2)求曲线 上的点到P点距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|﹣1<x≤3},B={x|m≤x<1+3m}
(1)当m=1时,求A∪B;
(2)若BRA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若y=(m﹣1)x2+2mx+3是偶函数,则f(﹣1),f(﹣ ),f( )的大小关系为(
A.f( )>f( )>f(﹣1)
B.f( )<f(﹣ )<f(﹣1)??
C.f(﹣ )<f( )<f(﹣1)
D.f(﹣1)<f( )<f(﹣

查看答案和解析>>

同步练习册答案