【题目】已知,命题:对,不等式恒成立;命题,使得成立.
(1)若为真命题,求的取值范围;
(2)当时,若假,为真,求的取值范围.
【答案】(1) 1≤m≤2.(2) (﹣∞,1)∪(1,2].
【解析】
试题分析:(1)(2x-2)min≥m2-3m.即m2-3m≤-2,解得1≤m≤2;(2)p,q中一个是真命题,一个是假命题,解得m的取值范围为(-∞,1)∪ (1,2].
试题解析:
(1)∵对任意x∈[0,1],不等式2x-2≥m2-3m恒成立,
∴(2x-2)min≥m2-3m.即m2-3m≤-2.
解得1≤m≤2.
因此,若p为真命题时,m的取值范围是[1,2].
(2)∵a=1,且存在x∈[-1,1],使得m≤ax成立,
∴m≤x,命题q为真时,m≤1.
∵p且q为假,p或q为真,
∴p,q中一个是真命题,一个是假命题.
当p真q假时,则解得1<m≤2;
当p假q真时,即m<1.
综上所述,m的取值范围为(-∞,1)∪(1,2].
科目:高中数学 来源: 题型:
【题目】在用二次法求方程3x+3x-8=0在(1,2)内近似根的过程中,已经得到f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根落在区间( )
A. B. C. D. 不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们可以把看作每天的"进步”率都是1%,一年后是;而把看作每天的“落后”率都是1%,一年后是.利用计算工具计算并回答下列问题:
(1)一年后“进步”的是“落后”的多少倍?
(2)大约经过多少天后“进步”的分别是“落后”的10倍、100倍、1000倍?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分) 已知P(3,2),一直线过点P,
①若直线在两坐标轴上截距之和为12,求直线的方程;
②若直线与x、y轴正半轴交于A、B两点,当面积为12时求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)设 ,,若 是的必要不充分条件,求实数的取值范围
(Ⅱ)已知命题方程表示焦点在轴上的椭圆;命题:双曲线的离心率.若 有且只有一个为真命题,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五一劳动节放假,某商场进行一次大型抽奖活动.在一个抽奖盒中放有红、橙、黄、绿、蓝、紫的小球各2个,分别对应1分、2分、3分、4分、5分、6分.从袋中任取3个小球,按3个小球中最大得分的8倍计分,计分在20分到35分之间即为中奖.每个小球被取出的可能性都相等,用表示取出的3个小球中最大得分,求:
(1)取出的3个小球颜色互不相同的概率;
(2)随机变量的概率分布和数学期望;
(3)求某人抽奖一次,中奖的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com