精英家教网 > 高中数学 > 题目详情

【题目】已知二面角α﹣AB﹣β是直二面角,P为棱AB上一点,PQ、PR分别在平面α、β内,且∠QPB=∠RPB=45°,则∠QPR为(
A.45°
B.60°
C.120°
D.150°

【答案】B
【解析】解:以正方体的模型,构造满足条件的几何图形如下图所示

连接QR,由正方体的性质可得△PQR为等边三角形
故∠QPR=60°
故选B
【考点精析】解答此题的关键在于理解空间中直线与直线之间的位置关系的相关知识,掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点,以及对平面与平面垂直的性质的理解,了解两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.

(1)求证:AB1∥平面BC1D;
(2)若BC=3,求三棱锥D﹣BC1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt△FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米, 米,记∠BHE=θ.

(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若 ,求此时管道的长度L;
(3)当θ取何值时,污水净化效果最好?并求出此时管道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直线的参数方程为 为参数),曲线的极坐标方程为.

(1)将曲线的极坐标方程化为直坐标方程,并说明曲线的形状;

(2)若直线经过点,求直线被曲线截得的线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|logax|(0<a<1)的定义域为[m,n](m<n),值域为[0,1],若n﹣m的最小值为 , 则实数a的值为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的焦距为2 ,长轴长为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如图,过坐标原点O作两条互相垂直的射线,与椭圆C交于A,B两点.设A(x1 , y1),B(x2 , y2),直线AB的方程为y=﹣2x+m(m>0),试求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个点A(2,1)、B(3,2)、D(﹣1,4).
(1)求证:
(2)要使四边形ABCD为矩形,求点C的坐标,并求矩形ABCD两对角线所夹锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一商场在某日促销活动中,对9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售为(
A.100万元
B.10万元
C.7.5万元
D.6.25万元

查看答案和解析>>

同步练习册答案