精英家教网 > 高中数学 > 题目详情

【题目】AB为真命题,而BC的逆否命题为真命题,且ABCD的充分条件,而DEBC的充要条件,则¬B是¬E____条件;AE____条件.(填充分”“必要充要既不充分也不必要

【答案】必要 充分

【解析】

根据原命题和逆否命题的真假可得出推出关系,已知条件可知,根据推出的传递性得到答案.

解:∵AB为真命题,∴AB

BC的逆否命题为真命题,∴BC

则若B成立,则C成立,

又∵DEBC的充要条件,∴DE

又∵ABCD的充分条件,

CD,则BE

BE的充分条件,

即¬B是¬E的必要条件.

ABCDE,∴AE

AE的充分条件.

故答案为:必要充分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数ω0)的最小正周期为π

(Ⅰ)求ω的值和fx)的单调递增区间;

(Ⅱ)若关于x的方程fx)﹣m0在区间[0]上有两个实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:

(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;

(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:

超过

不超过

第一种生产方式

第二种生产方式

(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,在数列中,首项是其前项和,且.

1)设,证明数列是等比数列,并求出的通项公式;

2)设,证明数列是等差数列,并求出的通项公式;

3)若当且仅当时,数列取到最小值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,设

1)求

2)判断数列是否为等比数列,并说明理由;

3)求的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB为真命题,而BC的逆否命题为真命题,且ABCD的充分条件,而DEBC的充要条件,则¬B是¬E____条件;AE____条件.(填充分”“必要充要既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两组各有三名同学,他们在一次测试中的成绩分别为:甲组:88、89、90;乙组:87、88、92.如果分别从甲、乙两组中随机选取一名同学,则这两名同学的成绩之差的绝对值不超过3的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当)的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:

(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?

(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.

查看答案和解析>>

同步练习册答案