分析 ①,取D为长方体的一个顶点,使得A,B,C是与D相邻的三个顶点,则可使四面体ABCD有3个面是直角三角形;
②,取同①的点D,使得点O与D为相对的两个长方体的顶点,利用长方体一定有外接球即可得出;
③,过O可以作一条直线与面ABC垂直,点D可以是该直线上任意点;
④,作△CBD为正三角形,使得AD=DB,则点D使四面体ABCD是正三棱锥.
⑤过点A作BC的垂面,垂面内过AD的每一条都垂直BC,;
解答 解:对于①,取D为长方体的一个顶点,使得A,B,C是与D相邻的三个顶点,则可使四面体ABCD有3个面是直角三角形,故正确;
对于②,∵二面角C-OA-B为直二面角,∴∠BOC=Rt∠,再取同①的点D,使得点O与D为相对的两个长方体的顶点,则点O在四面体ABCD的外接球球面上,故正确;
对于③,过O可以作一条直线与面ABC垂直,点D可以是该直线上任意点,故错
④作△CBD为正三角形,使得AD=DB,则点D使四面体ABCD是正三棱锥,故正确.
⑤过点A作BC的垂面,垂面内过AD的每一条都垂直BC,故正确;
故答案为:①②④⑤
点评 本题考查了长方体的性质、四面体的性质、线面垂直的判定与性质,考查了推理能力和空间想象能力,属于中档题
科目:高中数学 来源: 题型:选择题
A. | 充要 | B. | 充分不必要 | ||
C. | 必要不充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{3}{4}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com