【题目】已知函数().
(1)若在其定义域内单调递增,求实数的取值范围;
(2)若,且有两个极值点, (),求取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.求:
(1)x0的值;
(2)a,b,c的值.
(3)若曲线y=f(x)(0≤x≤2)与y=m有两个不同的交点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣x2﹣ x,则f(﹣a2)与f(﹣1)的大小关系为( )
A.f(﹣a2)≤f(﹣1)
B.f(﹣a2)<f(﹣1)
C.f(﹣a2)≥f(﹣1)
D.f(﹣a2)与f(﹣1)的大小关系不确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB.
(1)求AD1与面BB1D1D所成角的正弦值;
(2)点E在侧棱AA1上,若二面角E﹣BD﹣C1的余弦值为 ,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为 .类比到空间,有两个棱长均为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,底面是等腰直角三角形, ,侧棱,点分别为棱的中点, 的重心为,直线垂直于平面.
(1)求证:直线平面;
(2)求二面角的余弦.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列中, , , ,其中.
⑴ 求证:数列为等差数列;
⑵ 设, ,数列的前项和为,若当且为偶数时, 恒成立,求实数的取值范围;
⑶ 设数列的前项的和为,试求数列的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com